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ABSTRACT 

 

 

 Stormwater runoff is one of the leading causes of water quality impairment in 

the U.S. Bioretention systems are ecologically engineered to treat stormwater pollution 

and offer exciting opportunities to provide local climate change resiliency by reducing 

peak runoff rates, and retaining/detaining storm volumes, yet implementation is 

outpacing our understanding of the underlying physical, biological, and chemical 

mechanisms involved in pollutant removal. Further, we do not know how performance 

will be affected by increases in precipitation, which are projected to occur in the 

northeastern U.S. as a result of climate change, or if these systems could act as a source 

or sink for greenhouse gas emissions.  

 

This research examines the design, construction, and development of monitoring 

methods for bioretention research, using the University of Vermont (UVM) Bioretention 

Laboratory as a case study. In addition, this research evaluates mobilization patterns and 

pollutant loads from road surfaces during the “first flush” of runoff, or the earlier part of 

a storm event. Finally, this research analyzes the comparative pollutant removal 

performance of bioretention systems on a treatment by treatment basis.  

 

 At the UVM Bioretention Laboratory, eight lined bioretention cells were 

constructed with monitoring infrastructure installed at the entrance and at the 

subterranean effluent. A conventional, sand and compost based, bioretention soil media 

was compared to a proprietary media engineered to remove phosphorus, called Sorbtive 

Media™, under simulated increases in precipitation. Two drought tolerant vegetation 

mixes, native to the northeast, were compared for sediment and nutrient retention. Each 

treatment was sampled for soil gas emissions to determine if it was a source or a sink. 

 

The monitoring infrastructure designs used in this research allowed for the 

effective characterization of pollutant mass loads entering and exiting bioretention. 

Cumulative mass loads from stormwater were found to be highest for total suspended 

solids, followed by total Kjeldahl nitrogen, nitrate, non-labile phosphorus and soluble 

reactive phosphorus, in descending order by mass. Total suspended solids, total Kjeldahl 

nitrogen, and non-labile phosphorus mass were well retained by all bioretention 

treatments. However, the compost amendment in the conventional soil media was found 

to release labile nitrogen and phosphorus, far surpassing the mass loads in stormwater. 

When compared with conventional media, Sorbtive Media™ was highly effective at 

removing labile phosphorus and was also found to enhance nitrate removal. Systems 

containing deep-rooted vegetation (Panicum virgatum) were found to be particularly 

effective at retaining both labile and non-labile constituents. Overall, none of the 

bioretention treatments were found to be a significant source of N2O and were small sinks 

for CH4 in most treatments. 
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1 

 

CHAPTER 1: DISSERTATION OVERVIEW   

 

 
 Stormwater pollution is one of the leading causes of water quality impairment in 

the U.S., contributing to eutrophication, degradation of freshwater and marine habitat, 

and loss of income generated from recreational and commercial opportunities (U.S. 

Environmental Protection Agency 2008). Stormwater treatment systems such as Green 

Stormwater Infrastructure (GSI) have potential to help prevent further water quality 

degradation, but the factors contributing to the success of these systems are not well 

defined. Bioretention systems, in particular, have been shown to be effective at reducing 

peak stormwater flow rates, retaining and detaining volumes, and removing pollutants 

such as sediments; however, their removal of labile nutrient fractions has been variable 

(Lefevre et al. 2015). One critical concern is that the design conditions necessary to treat 

labile N and P are not necessarily complementary. For instance, anaerobic conditions are 

necessary for denitrification of nitrate, yet may result in the release of phosphorus 

previously sorbed to cations in the soil matrix (Groenenberg et al. 2013). Further, 

anaerobic conditions may result in the release of nitrous oxide and/or methane, which are 

potent greenhouse gases (Butterbach-Bahl et al. 2013). Research aimed at describing how 

various bioretention design features influence pollutant removal is limited; research into 

whether various design features might affect emission or sequestration of greenhouse 

gases is severely limited. 

 GSI systems are typically designed to treat a specific portion of the storm event, 

called a water quality volume (WQv), and require accurate estimates of incoming 

pollutant loads to measure their effectiveness in reducing pollutant mass. Traditionally, 
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the first half-inch of runoff has been thought to transport 90% of pollution from 

impervious surfaces over the course of an event (Bach et al. 2010; Bertrand-Krajewski et 

al. 1998); however, this “first flush” effect has not been widely validated, and may not be 

equally exhibited by all pollutant types (e.g., labile and non-labile) (Hathaway et al. 

2012). Further, the pollutant speciation and mass loads in stormwater from paved road 

surfaces is not well documented for different precipitation volumes. 

 Precipitation in the northeastern U.S. is projected to increase by 10 to 15 percent 

by the end of the century (Frumhoff et al. 2007; Guilbert et al. 2015). This may influence 

the pollutant retention capabilities of bioretention systems. However, the resiliency of 

bioretention performance  to increasingly intense rain events with higher volumes has not 

been tested, yet some assert that bioretention systems and other GSI would be more 

flexible in the face of climate change than conventional infrastructure (Rosenberg et al. 

2010; Waters et al. 2003). Bioretention design features such as soil media and vegetation 

have been shown to influence pollutant removal and stormwater retention performance 

(Hsieh and Davis 2006), yet there are very few comparative field studies of these 

components. 

 Monitoring bioretention will help improve our understanding of the physical, 

biological, and chemical mechanisms involved in pollutant removal, and allow us to 

begin to predict how these mechanisms will respond to changing precipitation patterns 

due to climate change. Monitoring can provide vital feedback to design engineers, 

ultimately helping to improve hydrologic and pollutant removal performance, lower 

costs, and determine long-term effectiveness and maintenance requirements, yet there are 
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very few bioretention systems that have been monitored in the field. There is currently 

very little published guidance as to how monitoring infrastructure for bioretention can be 

integrated into designs, and how it is physically placed during construction (Law et al. 

2008).  

 Eight bioretention systems (or cells) were constructed on either side of a paved 

roadway at the University of Vermont Bioretention Laboratory, with monitoring 

equipment installed at each cell’s inflow and the outflow to investigate (1) the incoming 

stormwater pollutant load from various precipitation events, (2) how mobilization and 

transport characteristics of various pollutants in stormwater compare, (3) how 

bioretention design features such as soil media influence pollutant load removal, (4) how 

resilient a conventional soil media would be under increased precipitation conditions, due 

to climate change (i.e., 20% more precipitation), (5) how resilient a proprietary media 

design would be under much larger than anticipated increases in precipitation (i.e., 60% 

more precipitation) conditions, and (6) how various bioretention design features, 

influence the emission or uptake of greenhouse gases (CH4, N2O, and CO2).  

 Chapter 2 is a comprehensive literature review containing background 

information on stormwater, the first flush concept, factors that influence bioretention 

performance, and factors likely to influence emissions and/or uptake of greenhouse gas 

emissions in bioretention.   

 Chapter 3 provides a detailed description of the monitoring infrastructure and 

sampling methodology used in this research. The goal of chapter 3 is to provide a feasible 
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monitoring infrastructure design that can be adapted for other locations to monitor 

bioretention.  

Chapter 4 investigates the mobilization and transport of nutrient and sediment 

mass from a roadway by stormwater, including a critical evaluation of the mass-based 

first flush from the research site, and a prediction of the total load likely to be delivered 

from a low to medium traffic paved asphalt road surface, by various precipitation depths. 

The goal of chapter 4 is to improve our understanding of the factors that influence 

pollutant mass mobilization, and predictions of stormwater mass loads, of nutrient and 

sediment pollutants. 

 Chapter 5 is a comparative evaluation of hydrologic and pollutant removal 

performance of bioretention systems with different soil media and vegetation treatments. 

In addition, it includes a description of methods to detect potential greenhouse gas 

emissions from the soil media within each treatment, and an assessment of the factors 

likely to influence emissions and/or uptake in bioretention cells. The goals of chapter 5 

are to (1) predict how design features influence pollutant removal, (2) assess how the soil 

media designs presented here would perform under changing precipitation scenarios 

projected to affect the Northeastern U.S., and (3) evaluate how these design features 

contribute to GHG emissions or uptake.  
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CHAPTER 2: COMPREHENSIVE LITERATURE REVIEW 
 

2.1. Stormwater Overview 

 Urbanization has had a profound effect on local hydrology as a result of 

increased impervious surfaces (e.g., roads, rooftops, parking lots and driveways), which 

result in higher stormwater discharge rates than  pre-development land surfaces (Booth 

1991; Brezonik and Stadelmann 2002; Marsalek et al. 2006). Masterson and Bannerman 

(1994) showed a > 200% increase in discharge (ft
3
s

-1
) in stream flow after a storm event, 

from pre to post development. High stormwater velocities mobilize and transport 

pollutants from impervious surfaces, including cadmium (Cd), chromium (Cr), copper 

(Cu), lead (Pb), mercury (Hg), zinc (Zn), polychlorinated biphenyls (PCB’s), polycyclic 

aromatic hydrocarbons (PAHs), total phosphorus (TP), non-labile phosphorus (NLP), 

soluble or dissolved reactive phosphorus (SRP), total nitrogen (TN), organic nitrogen 

(ON), total keldahl nitrogen ((TKN) contains both NH3, NH4
+
 and organic nitrogen), 

nitrite (NO2
-
), nitrate (NO3

-
), total suspended solids (TSS) as well as oil and grease, 

bacteria and pathogens (National Research Council 2008; U.S. Environmental Protection 

Agency 1998).   

 Stormwater pollutants have been shown to degrade the aquatic habitat of 

receiving water bodies (Booth and Jackson 1997; Galster et al. 2006; Masterson and 

Bannerman 1994) and significantly contribute to water quality impairment in the Unites 

States. Although nitrogen is widely recognized as the key nutrient controlling primary 

production and eutrophication in saltwater ecosystems (Correll 1999; Davis et al. 2006; 

Zinger et al. 2013), there is increasing discussion regarding the importance of nitrogen in 
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freshwater systems as well (Pearce et al. 2013; Turner and Rabalais 2013).  Thousands of 

waterbodies are legally required to develop a pollution budget for stormwater associated 

nutrients, called a total maximum daily load (TMDL) (U.S. Environmental Protection 

Agency 2008). 

 The National Pollutant Discharge Elimination System (NPDES) is a program 

under the umbrella of the Clean Water Act (CWA), and is the primary vehicle through 

which the federal government regulates the quality of the nation’s waters (National 

Research Council 2008). In 1987, Congress brought stormwater control under the 

auspices of the NPDES program, and in 1990, the U.S. Environmental Protection Agency 

(EPA) published the Phase I Stormwater Rules. These rules apply to municipal separate 

storm sewer systems (MS4s) serving over 100,000 people and for construction sites over 

5 acres. In 1999, Phase II Stormwater Rules were issued which expanded the 

requirements to include construction sites between 1 and 5 acres (National Research 

Council 2008). These regulations require the use of stormwater control measures (SCMs) 

or Best Management Practices (BMPs) and limit the concentration of pollution that can 

be released from a site through a discharge permit. Biological retention, or 

“bioretention,” is a stormwater management technique that is currently being encouraged 

as a BMP (National Research Council 2008). 

 

2.2. The First Flush Concept 

 Stormwater practitioners have to select a water quality volume (WQv), or 

portion of the storm event (e.g., 0.5 inches), to treat with stormwater best management 
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practices such as detention basins (Sansalone and Cristina 2004) or Green Stormwater 

Infrastructure (GSI) (e.g., bioretention system, grassed swale) (Law et al. 2008). 

Traditionally, the first half-inch of runoff has been thought to transport 90% of the total 

pollution from an impervious surface (Bach et al. 2010; Bertrand-Krajewski et al. 1998). 

This concept is generally referred to as the first flush (FF) and is described as a 

disproportionately high concentration and/or mass, of pollutants in the beginning of a 

storm event with a subsequent rapid decline (Bertrand-Krajewski et al. 1998; Sansalone 

and Cristina 2004; Stenstrom and Kayhanian 2005). Although it is widely used, the FF 

concept has not been widely validated for a wide range of pollutant types (e.g., labile and 

non-labile) and for both concentration and mass (Alias et al. 2014; Hathaway et al. 2012; 

Soller et al. 2005; Stenstrom and Kayhanian 2005).  

 When the FF is specifically referring to pollutant concentration, it is called a 

concentration based first flush (CFF) and when it is referring to mass, it is called a mass 

based first flush (MFF) (Sansalone and Cristina 2004).The CFF concept is a tenant upon 

which the regulatory selection of a WQv was built (Ringler 2007; Sansalone and Cristina 

2004), with the minimum WQv requirements being between 0.5 and 1.0 inches of rainfall 

(DeBusk and Wynn 2011; Sansalone and Cristina 2004; Stenstrom and Kayhanian 2005; 

Vermont Agency of Natural Resources 2002a). Although the CFF has been documented 

for some pollutants (Maestre and Pitt 2004), many studies have found variable results 

(Soller et al. 2005). The  MFF concept has not been widely validated across different 

watersheds and storm conditions, and may not be equally exhibited by all pollutant types 

(e.g., labile and non-labile) (Hathaway et al. 2012).  
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2.2.1. Factors that Influence Mass Mobilization and the First Flush 

 There are many factors that contribute to the mobilization of mass during a 

storm event, and accordingly, whether the CFF and/or MFF will be observable. For 

instance, the watershed area influences the time of concentration (Tc), or the time for the 

runoff to travel from the most hydrologically remote part of the watershed to the 

monitoring location (Kang et al. 2008). As pollutant transport time increases, so does the 

likelihood of mixing, dilution, and the introduction of complicating factors such as 

changes in land surface composition, friction forces, and abrupt changes in flow 

direction, which may affect pollutant composition within a storm (Kang et al. 2006). 

Therefore, smaller watershed sizes have been shown to more reliably present first flush 

characteristics (Kang et al. 2006; Lee and Bang 2000; Maestre and Pitt 2004).  

 Rainfall intensity, rainfall depth (Alias et al. 2014) and antecedent dry days 

(ADD) (Blecken et al. 2009; Brown et al. 2013), have also been shown to influence the 

distribution of pollutant mass within a storm event, although the relative influence of 

each is still somewhat unclear. Gupta and Saul (1996) found no correlation between the 

CFF for TSS and the ADD, however, TSS mass load was found to correlate with ADD, 

as well as peak rainfall intensity and storm duration. Maestre and Pitt (2004) worked in 

conjunction with the Center for Watershed Protection to review phase I National 

Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer 

(MS4) data from the national database of 3,700 events in 17 different states. The authors 

found that the first 30 minutes of runoff had higher concentrations of TKN (NH3, NH4
+
, 

organic N) compared to the composite of the storm, but SRP did not shown any CFF 
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effects. The authors conclude that peak flow rate, rainfall intensity, percent impervious 

cover, watershed size and land use are factors that influence CFF. Many CFF 

observations may have been partly due to the dilution effects of increasing stormwater 

volume during the rising limb of a hydrograph (Deletic 1998; Lee et al. 2002; Maestre 

and Pitt 2004; Miguntanna et al. 2013).  

 Stenstrom et al. (2005) found that concentrations and particle sizes decreased as 

the storm progressed. Larger particles showed more dominant CFF characteristics than 

smaller particles (Stenstrom and Kayhanian 2005). This could be due to the fact that 

higher flow rates can move larger particles based on Stokes law, but the larger particles 

will quickly settle out again when the momentum is reduced (Glysson et al. 2000). 

 Bach et al. (2010) offered a new method of evaluating CFF by essentially 

determining what storm volume resulted in a return of pollutant concentrations to low 

“background” conditions. The authors suggest that using the actual runoff volume needed 

to remove mass build-up on the road surface, as opposed to a dimensionless ratio that 

describes the proportion of mass removed by a proportion of volume, would help make 

studies more comparable, but needed further testing to be widely applied.  

 Much MFF research has focused on testing various definitions, with variable 

results (Bertrand-Krajewski et al. 1998; Gupta and Saul 1996; Hathaway et al. 2012; Lee 

and Bang 2000), and have been inherently difficult to compare across studies (Bach et al. 

2010). For instance, Gupta and Saul (1996) broadly defined the FF as the portion of the 

storm up to the maximum divergence between a plot of cumulative mass and cumulative 

volume. Bertrand-Krajewski et al. (1998) designated the first flush as 80% or more of the 
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total pollutant mass that is transported in the first 30% of the runoff volume. Many others 

have offered variations of the Bertrand-Krajewski et al. (1998) FF definition (Deletic 

1998), but according to Hathaway et al. (2012), the MFF is rarely found with these 

definitions. The definitions are difficult to use from a design standpoint, because the x% 

of the total storm volume cannot be known a priori. The FF volume may also be 

pollutant specific, thus sizing of tanks or treatment devices would need to be done with a 

specific pollutant in mind (Bertrand-Krajewski et al. 1998).  

 Sansalone and Cristina (2004) compared the MFF definitions above in addition 

to others and found them to be conceptually and mathematically equivalent, with a mass 

based first flush effect being defined when the M:V ratio is greater than 1.0. The M:V 

ratio is a dimensionless representation of the cumulative mass divided by the total mass 

as a function of the cumulative volume, divided by the total volume of a storm event 

(Bertrand-Krajewski et al. 1998). Sansalone and Cristina (2004) conclude that although a 

MFF may be present in some storm events, it is not significant enough by any definition, 

to warrant the development of a water quality volume upon which to base the treatment 

of a portion of stormwater (Sansalone and Cristina 2004). The authors suggest that 

instead, research should focus on the factors that affect mass load in order to improve 

predictions.  

 Alias et al. (2014) also moved away from using the more traditional definitions 

of MFF and instead, evaluated the mobilization of TSS, TP and TN mass from a 

combination of road and roof surfaces across different sections of the runoff hydrograph. 

The authors found that mass mobilization was highly influenced by increasing volume 
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and precipitation intensity, given monitored precipitation depths between 0.024 inches 

and 0.23 inches. The authors did not provide the total mass loads generated per m
2
 of 

drainage area from the site and did not differentiate between labile and non-labile N and 

P components. 

  Kang et al. (2006) used the kinematic wave equation to simulate various factors 

that influence the MFF effect, and predicted that a smaller number of ADDs would 

produce a lower mass and therefore result in a lower MFF, or the absence of the MFF 

effect all together. Long ADDs were predicted to result in large initial mass sources and a 

correspondingly high MFF.  Alias et al. (2014) found that rainfall depth and intensity 

played a more dominant role in runoff characteristics than the length of antecedent dry 

periods, although the authors did not distinguish between nutrient speciation (e.g., NO3
-
 

vs TKN), which may have distinct mobilization characteristics (Taylor et al. 2005).  

 Hathaway et al. (2012) found that the strength of the first flush, measured as the 

numeric value of the M:V ratio, was as follows, TSS > NH3 > TKN (NH3,NH4
-
, organic 

N) > NO2-NO3 > TP > SRP, although the M:V ratios were not greater than 1.0 for all 

pollutants in most cases. The MFF for TSS was found to be significantly greater than 

NO3
- 
(Hathaway et al. 2012). The MFF for TSS was not significantly different from NH3 

and TKN. Nitrogen displayed a stronger MFF characteristics than phosphorus, with SRP 

exhibiting the weakest MFF effect, which was virtually nonexistent (Hathaway et al. 

2012). Total runoff volume was found to inversely affect the strength of the FF on TSS 

but was positively correlated with SRP (Hathaway et al. 2012). Interestingly, the two land 
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use types in this study (impervious and forested) did not have an effect on the strength of 

the first flush.  

 It may be more relevant, as suggested by (Bach et al. 2010), to focus on how 

various influencing factors impact the total mass load that is delivered, and how the 

mobilization characteristics of different pollutants compare. In order to determine the 

total mass load that had built up upon the road surface prior to an event, Miguntanna et 

al. (2013) vacuumed the road surface and used simulated rainfall intensities to generate 

runoff. The authors found that nitrogen was predominantly present in runoff in a 

dissolved organic form, which was easily transported by low intensity rainfall events due 

to its solubility. SRP was found to be the primary species when the runoff particle size 

was < 75 um, whereas other P species were present when particle sizes were greater than 

75 um. The total pollutant mass per m
2
 of paved area from a residential area was as 

follows: TSS (2,250 mg m
2
) > TN (37, 190 μg m

-2
) > TKN (27,110 μg m

-2
) > TP (9,380 

μg m
-2

), non-labile phosphorus (9,240 μg m
-2

) > NO3
-
 (1,870 μg m

-2
) > SRP (140 μg m

-2
).   

 

2.3. Bioretention Design and Performance 

 Bioretention systems, also known as rain gardens (Davis 2008; Dietz and 

Clausen 2006; Hunt et al. 2008), biofilters (Zinger et al. 2013), and bioswales (Collins et 

al. 2010), are composed largely of soil media and vegetation that are intended to remove 

pollutants while also retaining and detaining stormwater volumes and reducing peak 

runoff velocities to more closely mimic pre-development hydrology. Bioretention is 

considered one component of Green Stormwater Infrastructure (GSI), which also falls 
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under the umbrella of a larger set of goals, referred to as Low Impact Development (LID) 

(Dietz 2007). In addition to improving water quality, bioretention systems can serve as 

public amenities, providing improved aesthetics and habitat value (Claytor and Schueler 

1996). These systems are rapidly growing in popularity, in both the public and private 

sectors. Despite being widely promoted, and required in some instances, there are still 

many unknowns regarding the factors that influence pollutant removal, and the long term 

viability of these systems.  

 Some of the many design features that affect the pollutant removal performance 

of bioretention, and other GSI systems include: residence time (Collins et al. 2010; 

Hurley and Forman 2011; Kadlec et al. 2010; Rosenquist et al. 2010; Sansalone and 

Cristina 2004); media depth (Brown and Hunt 2011); vegetation type, root depth, type 

and architecture (Claassen and Young 2010; Claytor and Schueler 1996; Collins et al. 

2010; Davidson et al. 2000; Davis et al. 2009; Kadlec et al. 2010; Lucas and Greenway 

2008; Read et al. 2008); organic matter content (Bratieres et al. 2008; DeBusk and Wynn 

2011; Fassman et al. 2013; Leytem and Bjorneberg 2009; Thompson et al. 2008); use of 

mulch (Bratieres et al. 2008; DeBusk et al. 2011; Dietz and Clausen 2006); percent sand, 

silt, and clay (Liu et al. 2014); chemical characteristics of the soil media (e.g., amount of 

iron, calcium, and aluminum) (Arias et al. 2001; Groenenberg et al. 2013; Vance et al. 

2003); ponding depth,  hydraulic conductivity, and infiltration rate (Thompson et al. 

2008); and the inclusion of features such as an internal water storage zone (IWS) (Chen 

et al. 2013; Dietz and Clausen 2006; Hunt et al. 2006; Kim et al. 2003). Proper 

maintenance and care taken during construction to avoid soil compaction are also critical 
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factors that will affect the long term performance of bioretention (Brown and Hunt 2011; 

Dietz and Clausen 2006).  

 Each of the design features listed above play an important role in the 

performance of bioretention systems; yet they are not always complementary. For 

example, phosphorus reduction via sorption can be reversed under reduced conditions 

(Basta and Dayton 2007), yet prolonged saturation is required for denitrification 

(Thomson et al. 2012). Understanding the underlying pollutant removal mechanisms of 

bioretention systems and how design feature influence them is critical to reducing 

variability in performance.  

2.3.1. Depth of Soil Media 

 Bioretention depth has been shown to positively influence nutrient and sediment 

removal (Bratieres et al. 2008; Li and Davis 2008, 2009) due to increased overall 

retention time and settling potential, and reduction in stormwater volume (Brown and 

Hunt 2011), yet many of the design recommendations for bioretention state that the depth 

should be “shallow” (Collins et al. 2010; Dietz and Clausen 2005, 2006; Lefevre et al. 

2015; Vermont Agency of Natural Resources 2002a). This distinction may have been 

made to differentiate the systems from conventional detention ponds, which tend to be 

much deeper than bioretention cells to hold a larger volume (National Research Council 

2008) or based on the application of bioretention cells on retrofit sites where a shallow 

depth would be necessary for reducing confilict with existing utilites and connecting to 

existing storm draininage infrastructure. The depth of a particular bioretention design is 
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likely to be site specific, but the term “shallow” may be misleading and discourage 

investigation into the use of deeper systems where there is potential to do so. 

2.3.2. Vegetation 

 Many stormwater and LID design manuals specify that bioretention systems 

should be planted (Collins et al. 2010; Davis et al. 2001, 2006; Dietz and Clausen 2005, 

2006; Dietz 2007; Hatt et al. 2008; Hunt et al. 2006; Kim et al. 2003), yet few go as far as 

to specify the pollutant removal benefits that different vegetation types (e.g., ground 

cover, shrubs, perennials, or trees) might provide  (Dietz and Clausen 2005).  Vegetation 

plays a  significant role in the removal of  labile N and P (Lintern et al. 2011) from the 

soil pore water stored between precipitation events (Serna et al. 1992), yet nutrient uptake 

is highly variable and dependent on root architecture, biomass, depth and type (e.g., 

fibrous vs woody)  (Brix 1994, 1997; Le Coustumer et al. 2012; Dietz and Clausen 2006; 

Read et al. 2008; Tanner 1996). Read et al. (2008) found that pollutant concentration in 

the effluent from bioretention negatively correlated with root mass for nearly all N and P 

constituents, with root mass explaining between 20 – 37% of the variability in effluent 

concentration.  

 Most plants favor shallower rooting depths (< 1 m) due to lower energy costs for 

development and maintenance, high short term nutrient contents, close proximity to 

incoming water, and high oxygen contents (Edwards 1992; Preti et al. 2010; Schenk 

2008). However, evidence also suggests that long-term nutrient availabilities (P, Ca
2+

, 

K
+
, and Mg

2+
) tend to be greater at depth in semi-arid and arid ecosystems (McCulley et 

al. 2004), which can be homologous to the sand based media often used in bioretention 
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designs (Houdeshel et al. 2015). Certain plants, such as switchgrass (Panicum virgatum ) 

may have adapted deep roots to maximize access to nutrients and moisture (Preti et al. 

2010; Schenk 2008). Read et al. (2008) suggests that deep rooted plants may provide 

important long term performance benefits, however their use in bioretention has not been 

the specific focus of many previous studies.  

 Thick-rooted plants have been shown to maintain long term permeability and 

reduce clogging in bioretention soils (Le Coustumer et al. 2012). By contrast, fine 

stemmed vegetation such as grasses, sedges and rushes have been shown to be highly 

efficient at providing above ground filtering capacity (Gagnon et al. 2012). Our current 

understanding of the role of vegetation in removing labile pollutants in bioretention 

systems in extremely limited (Lefevre et al. 2015). 

2.3.3. Bioretention Soil Media and the Addition of Organic Amendments 

 It is understood that sediments in stormwater are typically removed through 

extended detention and physical filtration of fine particles within the bioretention soil 

media, with removal rates between 70% and 99% being common (Bratieres et al. 2008; 

Brown and Hunt 2011; Hatt et al. 2008; Hsieh and Davis 2006). Extreme drying 

conditions have been shown to negatively impact TSS removal performance in soils with 

higher clay content (Blecken et al. 2009); drying increases the size of macropore 

channels, which can result in in the release of a portion of the previously removed 

sediment in the next storm event (Lintern et al. 2011). It is possible that the non-labile 

fraction of P and N may have similar removal mechanisms as TSS, and would similarly 

be affected by drying conditions based on their inherently larger particle sizes  



www.manaraa.com

 

 

 

17 

 

(Chen et al. 2013; Claytor and Schueler 1996; Davis 2007; Zinger et al. 2013); however, 

the sand-dominated bioretention soil media used in this research was not likely to exhibit 

extreme shifts in macropore size due to drying. The distinctive removal mechanisms of 

the different fractions of N and P are not well characterized within exisitng bioretention 

studies, and warrant further research.   

2.3.4. Organic Amendments in Bioretention Soil Media 

 The engineered soil media used in bioretention designs varies, and includes both 

native soil removed during construction (Dietz 2007) as well as imported material, when 

native infiltration rates are not optimal. Imported sand based media designs are common, 

with the addition of an organic amendment usually recommended (Bratieres et al. 2008; 

DeBusk and Wynn 2011; Michigan Department of Environmental Quality 2008; 

Thompson et al. 2008; Vermont Agency of Natural Resources 2002a; Washington State 

University Pierce County Extension 2012). Organic matter (e.g., compost, mulch) 

provides nutrients to plant communities, moisture retention, cation exchange capacity and 

fosters microbial growth (Kim et al. 2003; Lintern et al. 2011). Soil organic matter (OM) 

is a grouped measure, containing both partially decomposed organic compounds and soil 

humus. It is largely a measure of soil carbon, and can range from less than 1% in coarse 

sandy soils to greater than 5% in fertile grassland soils (Brady and Weil 2008).  

 Thompson et al. (2008) found that the addition of compost in bioretention 

increased saturated hydraulic conductivity, aggregate stability, water holding capacity, 

and decreased bulk density. Mulch is also often included in bioretention designs to retain 

moisture and subdue weed growth, as one would in a traditional landscaping setting 
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(Davis et al. 2001, 2006; Dietz and Clausen 2005, 2006; Dietz 2007; Hunt et al. 2006). 

Mulch, and other organic amendments, have also been shown to be highly effective at 

removing metals from stormwater (Hsieh and Davis 2006; Muthanna et al. 2007). There 

is concern within the literature that the benefits provided by organic amendments may be 

undone by their potential to release nutrients (Lefevre et al. 2015), however the specific 

mass loads from organic amendments and their relative contribution to the performance 

of bioretention has not been the specific focus of many previous research studies. The 

following section reviews the nutrient retention and export associated with bioretention 

soil media. 

2.3.5. N and P Cycling in Soils 

 Soils and organic amendments (e.g., compost, mulch) contain two major nutrient 

pools: (1) insoluble particulate organic and inorganic N and P (non-labile) and (2) 

dissolved organic and inorganic N and P (labile), which are in soil solution. The organic 

portion of the pool in traditional soils is variable, usually ranging from 20 to 80% 

(Schachtman et al. 1998). SRP, NO2
-
, NO3

-
, NH3, and NH4

+
 are inorganic labile nutrients 

that can be transported from the soil profile during a storm event (Schachtman et al. 

1998). Labile nutrients removed from within the soil media are replaced by 

decomposition and mineralization (Basta and Dayton 2007) and may not be well retained 

by bioretention systems (Blecken et al. 2010; Clark and Pitt 2009; Dietz and Clausen 

2005; Hsieh and Davis 2003, 2006; Hunt et al. 2006; Lucas and Greenway 2011). 

 Organic nitrogen is broken down by mineralization, releasing the ammonium 

ion (NH4
+
) in a highly temperature and moisture dependent microbially mediated process 
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(Serna et al. 1992). Removal occurs via plant uptake and sorption reactions with 

negatively-charged organic matter and clay particles in the soil matrix (Arias et al. 2001; 

Brix et al. 2001; Komlos and Traver 2012; Lucas and Greenway 2011).  Plant uptake 

rates have been shown to increase up to external NH4
+
 concentrations of 240 mg/L (Serna 

et al. 1992). In some plants, NH4
+
 is absorbed by plant roots at a higher rate than NO3

-
, 

and results in a decrease in surrounding pH (Serna et al. 1992). 

 In aerobic conditions, microbes oxidize ammonium to nitrite (NO2
-
) and nitrate 

(NO3
-
) during the second step of nitrification (Conrad 1996), which produces H

+
 and 

decreases pH. Ammonium is therefore thought to be short lived, having a turnover time 

of approximately 24 hours in most soils (Jones et al. 2005). Nitrate (NO3
-
) is a 

monovalent, negatively charged ion that is rapidly transported through the soil matrix by 

water, making it difficult to remove through adsorption and plant uptake. The rate of 

NO3
-
 diffusion in soil is thought to be approximately five times higher than NH4

+ 
(Serna 

et al. 1992). Any uptake that does occur is likely being pulled from the nitrate stored in 

the soil matrix as soil pore water between storm events. Nitrate uptake rates by plant 

roots have been shown to increase until external nitrate levels of 120 mg/L, and result in 

an increase in pH around plant roots (Serna et al. 1992). 

 Denitrification is thought to be the primary nitrate removal mechanism in 

bioretention systems (Bratieres et al. 2008; Davis et al. 2006; Kim et al. 2003; Lucas and 

Greenway 2008). Biotic denitrification is a microbially-mediated conversion of nitrate to 

nitrogen gas and requires oxygen contents of less than 0.5 mg L
-1

 (Rönner and Sörensson 
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1985).  The stepwise denitrification process is as follows, with the oxidation states of N 

shown in parenthesis. 

NO3
- 
[+5] → NO2

-
 [+3] → NO [+2] → N2O [+1] → N2 [0] 

Abiotic denitrification of NO3
-
 may also occur in the presence of inorganic ions (Fe

2+
, 

Cu
2+

, Mn
2+

) in the soil matrix, in a process called chemodenitrification (Butterbach-Bahl 

et al. 2013; Luther et al. 1997), although this process is not well understood. Prolonged 

periods of saturation and low oxygen content are typically needed for denitrification, but 

if incomplete, the process can release nitrous oxide (N2O), which is a long-lived 

greenhouse gas (144 years) that is currently the most important natural cause of 

stratospheric ozone depletion (Bond-Lamberty and Thomson 2010; Butterbach-Bahl et al. 

2013; Del Grosso and Parton 2012). It is, therefore, vitally important that the transport 

and removal mechanisms of nitrogen in bioretention cells are well understood.  

 Although soil phosphorus content may range anywhere from 500 to 2,000 mg/L, 

bioavailable phosphorus (orthophosphate) may be only a few mg/L because much of it 

forms insoluble complexes with soil cations (Vance et al. 2003). To compensate for P 

complexation, the roots of many plants exude citric and malic acids into the rhizosphere. 

The exudates allow for the chelation of Al
3+

, Fe
3+

, and Ca
2+

, that subsequently releases 

insoluble phosphorus (Horst et al. 2001; Plaxton and Podestá 2006). This newly released 

P can then be taken up by plants. SRP is also generated during decomposition and 

mineralization of organic matter (Sinsabaugh et al. 2005). 
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2.3.6. CEC and pH 

Cation exchange capacity (CEC) is a measure of the capacity of the soil to hold  

cations , and are available to replenish nutrients as they are taken up in the water-soluble 

phase, or adsorbed by plant roots directly through active transport (Sonon et al. 2014). 

CEC is most directly influenced by the amount of calcium (Ca
2+

), magnesium (Mg
2+

), 

sodium (Na
+
), and potassium (K

+
) ions present in a soil (Sonon et al. 2014), which are 

often related to percent organic matter. These ions are also referred to as base cations, for 

they outcompete the hydronium ion (H
+
) for binding sites on negatively charged clay 

particles and organic matter complexes, thereby increasing the pH in the surrounding soil 

solution (Brady and Weil 2008).  

 Divalent cations (i.e., Ca
2+

, Mg
2+

) share similar properties in both the soil water 

phase, and when adsorbed to cation exchange sites, however, Ca
2+

 is preferentially 

adsorbed and more strongly held when compared to Mg
2+

 (Sonon et al. 2014). Divalent 

cations are more strongly held to negatively charged soil particles than monovalent 

cations (i.e., K
+
, Na

+
) (Sonon et al. 2014). Soils with low CEC values are less resilient to 

leaching effects and the pH  is more likely to decrease over time (Sonon et al. 2014). A 

sandy soil has the lowest CEC, typically between 1 – 5 cmolc kg
-1

  (Sonon et al. 2014), as 

shown in Table 1.  

Table 1. Soil textures and CEC (Sonon et al. 2014). 

Soil Texture CEC (cmolc kg
-1

)  

Sand 1-5 

Fine Sandy Loam 5-10 

Loam 5-15 

Clay Loam 15-30 

Clay > 30 
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 The leaching of cations from soil solution during precipitation events, and the 

removal via plant uptake can decrease soil pH (Brady and Weil 2008). As cations are 

removed from soil, the empty negatively charged binding sites become occupied by H
+ 

and Al
3+

. A large decrease in pH can iron solubility, which could result in the dissolution 

of previously unavailable ferric (Fe
3+

) oxyhydroxides and any associated phosphorus 

(Jones 1998). 

2.3.7. Inconsistent Labile N and P Removal in Bioretention 

As outlined in the latest review of bioretention performance by Lefevre et al. 

(2015), labile nitrogen and phosphorus removal reported to date has been extremely 

variable, ranging from -630% to 98% for nitrate and from -78% to 98% for SRP 

(Bratieres et al. 2008; Dietz and Clausen 2005; Geosyntec Consultants and Wright Water 

Engineers 2012; Hatt et al. 2008; Hunt et al. 2006; Li and Davis 2009). Geosyntec 

Consultants and Wright Water Engineers (2012) conducted a comprehensive review of 

the International Stormwater BMP Database and found a net export of labile P from 

bioretention overall, with median effluent concentrations of 130 μg L
-1

. The variability of 

labile N and P removal has been thought to be related to the soil media (Lefevre et al. 

2015), but the relative contribution of the labile N and P from the soil media has not been 

the explicit focus of many research efforts. 

 Bratieres et al. (2008) found SRP concentration reduction of greater than 83% in 

sandy loam filter media, and sandy loam with 10% vermiculite and 10% perlite, but 

media with10% leaf compost and 10 % mulch resulted in a net export of SRP, of greater 

than 78%. Debusk et al. (2011) found that leaf compost contained 900 mg kg
-1

 of TP and 
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13,500 mg kg
-1

 of TN. Potting soil had 400 mg kg
-1

 of TP and 2,270 mg kg
-1

 of TN, and 

topsoil had 200 mg mg
-1

 of TP and 594 mg kg
-1

 of TN. Mulch contained 335 mg kg
-1

of 

TP and 1,800 mg kg
-1

 of TN. All of the above were thought to contribute some portion of 

their labile nutrient content, resulting in the export of nutrients from the system; however, 

the relative contribution was not explicitly studied. Hunt et al. (2007) concluded that if 

the bioretention soil media was low in available phosphorus, then it would be unlikely to 

export phosphorus in the future.   

 Despite the potential for labile N and P to be released from organic amendments 

used in bioretention media, the dominant concerns regarding plant establishment and 

metals removal have prevailed, thus, organic amendments, such as compost and mulch 

are, still being broadly recommended by many government agencies and stormwater 

professionals for use in bioretention cells (Bratieres et al. 2008; Brown and Hunt 2011; 

Busnardo et al. 1992; Clark and Pitt 2009; Claytor and Schueler 1996; Davis et al. 2009; 

DeBusk and Wynn 2011; Dietz and Clausen 2005; Eger 2012; Hunt et al. 2006; Kim et 

al. 2003; Lintern et al. 2011; Paus et al. 2013; Stander and Borst 2010; Thompson et al. 

2008).  The relative contribution of labile N and P from organic amendments to the 

effluent from bioretention cells is largely untested.  

2.3.8. Soil Media Designed to Remove Labile P 

 New research is being conducted to specifically engineer soil media to remove 

phosphorus within bioretention and other stormwater management applications through 

selective inclusion of different cations within the soil, as well as the chemical engineering 



www.manaraa.com

 

 

 

24 

 

of new proprietary media (e.g. Sorbtive Media ™, Blue Pro®). A review of phosphorus 

sorption mechanisms is provided in the following section. 

 Labile phosphorus (i.e., SRP) can be removed from solution through 

precipitation and sorption reactions (also called fixation, surface complexation, ion 

exchange and ligand exchange), which vary in their bonding strength and relative 

stability, depending on mineral structure and pH (Figure 1.) (Sollins et al. 1988).  

 

Figure 1. Phosphorus adsorption in soils with increasing pH (Michigan State University Extension). 

 

In alkaline conditions, phosphorus reacts with calcium and becomes insoluble, 

precipitating from solution (Sollins et al. 1988). In more acidic conditions, iron (Fe) and 

aluminum (Al) are thought to be the main drivers of phosphorus sorption (Arias et al. 

2001; Gerritse 1993). Sorption can occur through the formation of outer sphere 

(adsorption) or inner sphere (absorption) complexes (Sollins et al. 1988; Weng et al. 

2012). Outer sphere complexes result from the formation of positive or negative charges 

on the particle surface, which attract the opposite charge. Aluminosilicate clays and 

sesquioxides (oxides, hydroxides and oxyhydroxides) of Fe and Al provide the majority 

of the surface adsorption potentials. These charges form as a result of the protonation 
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(addition of an H
+
) and deprotonation (removal of H

+
) of hydroxyl groups (OH

-
) 

(Essington 2004). 

 Inner sphere complexes can form when a functional group (e.g., hydroxyl) on 

the particle surface is replaced by an ion complex, resulting in the formation of a covalent 

bond (Essington 2004; Sollins et al. 1988). Inner sphere complexes are stronger than 

outer sphere due to a lack of water molecules separating the ion from the soil surface 

charge. Inner sphere phosphorus sorption occurs when surface hydroxyls are replaced by 

phosphate and form covalent bonds with Al, Fe, or Si (Sollins et al. 1988; Weng et al. 

2012).  

 Researchers have begun to apply these concepts in bioretention, in order to 

maximize phosphorus retention by the soil media. For example, Chardon et al. (2005) 

tested the phosphorus sorption capacities of iron-coated sand, a byproduct of the drinking 

water industry in the Netherlands. The authors found that the material had an average P 

removal efficiency of 94%.  Stoner et al. (2012) found that the controlling factors in P 

removal were dependent on the dominant mineral association. For instance, with 

retention times of 0.5 to 10 minutes, inflow P concentrations and retention times were the 

most important factors in materials dominated by calcium, and chemical precipitation 

was the primary removal mechanism. In Fe and Al dominated systems, retention time did 

not play as large a role in P removal as metal content and incoming P concentration, 

where ligand exchange was the primary P removal mechanism (Stoner et al. 2012).  
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2.3.9. Phosphorus Desorption 

 Although metal sorption seems promising for removing labile P, doubts are 

often raised regarding its longevity if the conditions become anaerobic. In an anaerobic 

environment, oxygen depletion forces the microbial communities to utilize electron 

acceptors preferentially, in the following order:  O2 > NO3
-
 > Mn

4+
 > Fe

3+
 > SO4

2-
 

(Spivakov et al. 1999). This produces the reduced version of the species, which includes 

N2 (and other reduced forms of N), Mn
3+

, Fe
2+

, and S
2- 

or H2S.  The reduced form of ferric 

iron (Fe
3+

),  is ferrous iron (Fe
2+

), which is soluble and can release phosphorus previously 

bound to it (Spivakov et al. 1999). There is some uncertainty regarding whether  

phosphorus that is released from iron complexes during reduced conditions will be 

transported from the soil, effectively being lost from the system. For instance, P that is 

released from Fe
3+

 in soil may remain suspended in the adjacent pore water, loosely held 

by attraction, to be sorbed again when aerobic conditions return (Young and Ross 2001). 

This would not be the case, however, if gravitational or fluid forces became dominant, as 

may be the case in bioretention. Some mineral phosphorus associations also help protect 

against desorption. For instance, the presence of manganese oxide has been shown to 

prevent the reductive dissolution of phosphorus bound to ferric iron oxide (Groenenberg 

et al. 2013).  

 Anaerobic conditions, and potential phosphorus desorption, are most likely to 

occur in bioretention designs which include an internal water storage (IWS) zone, for 

enhanced nitrogen removal via denitrification. Phosphorus removal data from these 

systems has been variable (Passeport et al. 2009), with enhanced P removal being shown 
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in some cases. For instance, Hunt et al. (2006) found SRP concentrations from designs 

with IWS zones (520 μg L
-1

) were lower than from designs without an IWS zone (2,200 

μg L
-1

). Dietz and Clausen (2006) showed some of the lowest outflow TP concentrations 

reported (39 μg L
-1

 to 43 μg L
-1

), in a system designed with an IWS zone. It is unclear if 

phosphorus desorption in bioretention is related to the inclusion of an IWS zone and 

warrants future research. The use of an IWS zone for nitrogen removal will be discussed 

in the following section. 

2.3.10. Nitrogen Removal with an Internal Water Storage Zone (IWS) 

 Nitrogen transformation dynamics are complex, with nitrification and 

denitrification occurring simultaneously within aerobic and anaerobic microsites 

throughout a soil aggregate (Vilain et al. 2014). Nitrate is often exported from 

bioretention, with the soil media thought to be a contributor (Davis et al. 2001, 2006; 

Hunt et al. 2006). In an attempt to increase nitrate removal, IWS zones have been trialed 

to promote denitrification (Chen et al. 2013; Dietz and Clausen 2006; Hunt et al. 2006; 

Kim et al. 2003). The results have been somewhat successful, although the necessary 

conditions for optimal denitrification (e.g., labile carbon content, saturation duration, 

optimal electron donors) in bioretention are still not fully understood.  

2.3.11. Volumetric Water Content (VWC)  

 Volumetric water content (VWC) is a measure of the fraction of the total 

volume of soil that is occupied by water (m
3
 m

-3
), and is often expressed as a percent 

(Mengel and Kirkby 2001). The ambient VWC of a soil varies depending on the soil’s 
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water holding capacity. The plant available water is the difference between the permanent 

wilting point and field capacity (Mengel and Kirkby 2001), as shown in Figure 2. 

 
Figure 2. Volumetric soil moisture content by soil textural class, modified from Zotarelli et al. (2010). 

 

Soils with a higher silt, clay, and organic matter content will have higher plant available 

water and ambient VWC (Brady and Weil 2008; Zotarelli et al. 2010). As the VWC 

increases, the soil and pore fluid interface undergoes a host of dynamic exchanges. Ionic 

material that is loosely bound to the soil matrix becomes part of the soil pore water, and 

ions can be transferred between the pore water and the soil matrix (Mengel and Kirkby 

2001).  

 Plant roots are able to remove nutrients held in pore water, with the remaining 

water requiring more energy to extract (Mengel and Kirkby 2001). Vertical migration of 

water through the soil profile occurs when water content is above field capacity and 

gravity overcomes the soil matric potential. This downward movement of water can 

transport ionic material in pore water to lower layers of the soil profile (Mengel and 
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Kirkby 2001). Sandy soils are known to have low plant available water with field 

capacity relating to a VWC of between 5% - 10% (Zotarelli et al. 2010) (Figure 2).  

2.3.12. Electrical Conductivity (EC)  

 Electrical conductivity (EC) is comprised of two primary components: (1) the 

exchangeable cations (Ca
2+

, Mg
+
, K

+
) from the solid soil particles themselves and (2) the 

ions present in a soil solution (Heiniger et al. 2003). Bioretention soil receives inputs of 

nutrients from rain water, mineralization of existing organic matter, and stormwater. Rain 

water typically has an EC of between 5 x 10
-4

 dS m
-1

 and 0.003 dS m
-1

 (Essington 2004). 

The EC of stormwater varies widely, depending on the amount of dissolved solutes 

present (Kayhanian et al. 2007). Soil EC is naturally highly variable. The University of 

Georgia Extension rates soil EC from 0 – 0.15 dS m
-1

 as low enough to cause plants to 

exhibit signs of nutritional deficiency. Soil EC greater than 4 dS m
-1

 is considered 

slightly saline by the USDA and can reduce vegetative growth and microbial 

decomposition, respiration and nitrification (USDA Natural Resources Conservation 

Service 2011). The Washington State University Extension Low Impact Development 

Manual (2005) recommends a maximum EC of 5 dS m
-1

 for bioretention soil media 

(Washington State University Pierce County Extension 2012). 

 

2.4. Climate Change in the Northeastern U.S.  

 Temperatures in the northeastern U.S. are predicted to rise between 2.5 
o
F (1.4 

o
C) and 4 

o
F  (2 

o
C) in the winter, and between 1.5 

o
F  (0.83 

o
C) and 3.5 

o
F (1.9 

o
C ) in the 

summer, regardless of future changes in greenhouse gas emissions (Frumhoff et al. 2007; 
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Guilbert et al. 2015). Hot summer conditions are expected to arrive earlier and last 

longer. The number of  days with temperatures greater than 100 
o
F are projected to 

increase, and the length of winter is projected to decrease (Frumhoff et al. 2007). These 

scenarios have the potential to change pest and crop dynamics, and increase water 

temperatures, which would  impact nutrient cycling, and threaten important economic 

industries such as agriculture, fisheries and tourism among many others (Frumhoff et al. 

2007). 

 In the northeastern U.S., precipitation has increased by 5 to 10 percent since 

1900 (Frumhoff et al. 2007; Guilbert et al. 2015). This trend is predicted to continue 

under both high and low emission scenarios, with an increase in annual precipitation of 

10 to 15 percent (~ 10.2 cm per year) by the end of the century (Frumhoff et al. 2007; 

Gillian et al. 2014). Precipitation intensity is also projected to increase in the northeast 

(Guilbert et al. 2015) and globally, due to increased atmospheric water vapor from the 

warming oceans (Gillian et al. 2014). The effects of these changes are not easy to predict 

on a local scale. Changes in precipitation and temperature are likely to generally affect 

nitrous oxide (N2O) and methane (CH4) emissions (Castellano et al. 2010; Connor et al. 

2010; U.S. Climate Change Science Program and the Subcommittee on Global Change 

Research 2008). Both precipitation and temperature impact soil nitrogen cycling 

(mineralization, biological fixation, nitrification, denitrification, ammonia volatilization 

and nitrate leaching) as well as the growth rate of plants, which directly affects nitrogen 

demand (Del Grosso and Parton 2012). Increased precipitation is likely to enhance 

nitrification and denitrification rates, which release N2O, while also increasing nitrogen 



www.manaraa.com

 

 

 

31 

 

uptake via plants (Del Grosso and Parton 2012), which would in turn, limit the nitrate 

substrate available for microbial processes (Del Grosso and Parton 2012). The relative 

dominance of either process is uncertain.  

 In the stormwater community, there is considerable interest in determining how 

to maximize the denitrification of nitrate to nitrogen gas. In bioretention systems, the soil 

media is selected to meet a number of criteria. Although denitrification of nitrate is often 

listed as a goal, the soil conditions in-situ (aerobic) do not always encourage complete 

denitrification (Davis et al. 2001, 2006; Hunt et al. 2006) but instead, may encourage 

nitrification; both processes have the potential to release nitrous oxide (Butterbach-Bahl 

et al. 2013; Thomson et al. 2012). More research is needed to determine the scale of 

nitrous oxide emissions possible from bioretention systems, and which conditions are 

best suited to promote efficient nitrogen transformation (e.g., carbon and nitrate content, 

saturation duration). 

2.4.1. Nitrous Oxide (N2O) 

 Nitrous oxide (N2O) is a long-lived trace gas, with an atmospheric lifespan of 

144 years (Bond-Lamberty and Thomson 2010), with an average mixing ratio of 322.5 

parts per billion by volume (ppbv) in 2009 (Butterbach-Bahl et al. 2013), and a 100-year 

warming potential 298 times that of carbon dioxide (Butterbach-Bahl et al. 2013; Dalal et 

al. 2003; Del Grosso and Parton 2012; Thomson et al. 2012). Concentrations have 

increased by 19 % since pre-industrial history, with an average increase of 0.77 parts per 

billion per volume per year (ppbv/yr) from 2000-2009. N2O contributes 6.24 % to the 

overall global radiative forcing, and is currently the most important natural cause of the 
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depletion of stratospheric ozone (Butterbach-Bahl et al. 2013; Del Grosso and Parton 

2012; Portmann et al. 2012; Ravishankara et al. 2009; Thomson et al. 2012).   

 It is well known that microbial activity in soils is a major contributor of N2O to 

the atmosphere. It is produced during both nitrification and denitrification, with the latter 

also being a sink for N2O (Conrad 1996; Schlesinger 2013; Zhuang et al. 2012). The 

seminal work of Nommik (1956) outlined the main environmental factors that control 

N2O production, building the case for microbiological production of N2O and N2. The 

main processes which drive nitrogen reactions are nitrogen fixation (nitrogen gas to 

ammonia), nitrification (ammonia to nitrate), dissimilatory nitrate reduction to ammonia 

or nitrate ammonification (nitrate to ammonia), anaerobic ammonia oxidation or 

anammox, and denitrification (nitrate to nitrogen gas) (Conrad 1996). N2O can be 

reduced back to N2 by some DNRA (dissimilatory reduction of nitrate to ammonia) 

bacteria or in the stepwise denitrification process (Conrad 1996). 

2.4.1.1. Nitrous Oxide Emissions 

 Roughly 62% of N2O emissions globally can be traced back to natural and 

agricultural soils through bacterial denitrification and oxidation of ammonia (Smith et al. 

2012; Thomson et al. 2012).  Zhuang et al. (2012) developed a large-scale global 

inventory of N2O emissions from natural systems alone, and found large spatial and 

seasonal variability in emissions due to soil type, climate and vegetation. The authors 

estimate that non-agricultural global soil N2O sources produce 3.37 Tg of N per year, 

with a major source coming from tropical warm and moist soils. High latitude ecosystems 

were estimated to contribute less than 0.10 Tg N per year (Zhuang et al. 2012). 
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 According to the hole-in-the-pipe model first presented by Firestone and 

Davidson in 1989, both nitrification and denitrification processes are enhanced by the 

availability of nitrogen in the soil (Verchot et al. 1999), which is heavily influenced by 

the nutrient inputs via fertilization and by the growth of nitrogen fixing vegetation (Del 

Grosso and Parton 2012). Agricultural emissions from nitrogen-based fertilizers and 

manure management are between 4.3–5.8 Tg N2O-N/yr, whereas emissions from natural 

soils are between 6-7 Tg N2O-N/year, with combined soil and agricultural emissions 

accounting for about 56 – 70%% of the global N2O emissions (Schlesinger 2013).  

 Recent analyses suggests that 3 to 5 percent of the nitrogen from agricultural 

land is converted to N2O annually, which is possibly responsible for the increase in N2O 

mixing ratio from 270 ppbv in 1860 to 315 ppbv  in 2000 (Del Grosso and Parton 2012; 

Smith et al. 2012).  Sources of reactive nitrogen in agricultural systems include the 

addition of synthetic fertilizers, the biological fixation of nitrogen, and mineralized 

organic nitrogen when organic matter is broken down during cultivation (Thomson et al. 

2012). Processes such as volatilization, leaching and erosion can also trigger N2O 

emissions without direct N applications (Butterbach-Bahl et al. 2013). 

  Soil water content is also a key influencing factor in N2O emissions, for water 

can result in displacement of gases previously trapped in the soil matrix, create localized 

anoxic conditions which encourage denitrification, or effectively block gas from escaping 

through various soil macropores if they are filled with water (Davidson et al. 2000). 

Water filled pore space (WFPS) for many soils at field capacity is about 60%, where 

micropores are filled with water and macropores are filled with air (Castellano et al. 
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2010). This dynamic hybrid-condition allows both oxidative and reductive processes to 

take place. When WFPS is between roughly 50% and 60%, N2O emissions are thought to 

predominantly be the result of nitrification, whereas when WFPS is greater than 60%, 

N2O emissions are thought to begin to occur predominantly as a result of denitrification 

(Bouwman 1998; Davidson et al. 2000).  

 N2O emissions measured from soils in different land use settings have been 

variable. For instance, native grasslands and wheat fields have been shown to have N2O 

emissions of less than 4 μg m
-2 

h
-1

 with peaks of  15 μg m
-2 

h
-1

 and 19 μg m
-2 

h
-1

 during 

winter measurements due to freeze and thaw events (Kaye et al. 2004). Lawns have 

shown N2O emissions less than 10 μg m
-2 

h
-1

 with peaks of greater than 60 after 

fertilization (Livesley et al. 2010). In one of the few studies that quantified emissions of 

N2O in bioretention cells, Grover el al. (2013) found that the soil media in bioretention 

cells was a source of N2O overall, with average emissions over the course of one year 

between of 13.8 μg m
-2 

h
-1

 and 65.6 μg m
-2 

h
-1

. The soil media profile included sandy 

loam, 80% sandy loam with10% compost, and 10% hardwood mulch and contained a 0.2 

m (0.656 ft) internal water storage zone (Grover et al. 2013)  

 Soil depth is another factor in nitrification and denitrification due to the greater 

availability of carbon in topsoil (Conrad 1996; Senbayram et al. 2012; Vilain et al. 2014). 

For instance, Vilain et al. (2014) found that nitrous oxide emissions via denitrification 

were significantly greater in topsoils (10 – 30 cm) as opposed to subsoils (90-110 cm). 

Plants also release low molecular weight organic compounds into the soil via their root 

systems which denitrifiers and nitrate ammonifiers (bacteria that sequentially reduce 
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nitrate to ammonium) are thought to compete for (Mengis et al. 1997; Thomson et al. 

2012). This helps explain why nitrous oxide rates are often positively correlated with 

soluble organic carbon content (Del Grosso and Parton 2012).  

2.4.1.2. Nitrous Oxide Uptake  

 Although most soils act as a net source of N2O emissions, uptake or 

consumption has also been observed (Butterbach-Bahl et al. 2013; Chapuis-Lardy et al. 

2007; Conrad 1996; Schlesinger 2013). The term “uptake” describes both the flux of a 

gas from the atmosphere to the soil, as well as the transformation of one gas to another 

(i.e., N2O reduction to N2 via reduction) (Chapuis-Lardy et al. 2007). N2O uptake is  

thought to occur predominantly as a result of denitrification, where heterotrophic bacteria 

utilize nitrogen oxides as an energy source, and terminal electron acceptor (Chapuis-

Lardy et al. 2007; Conrad 1996; Schlesinger 2013). The main sink for N2O is commonly 

referred to as N2OR or nitrous oxide reductase. N2OR is an enzyme found in denitrifying 

bacteria and reduces nitrous oxide to nitrogen gas. This enzyme uses copper (Cu) clusters 

as a catalyst (Thomson et al. 2012). This enzymatic activity is fragile and can be stunted 

or interrupted by even brief exposures to oxygen and decreases in pH, which likely 

affects the assembly of N2OR (Thomson et al. 2012).  

 Above 80% WFPS, N2O consumption is predicted to occur via denitrification, 

with N2 being the main end product (Bouwman 1998), although field measurements 

frequently diverge from this model, making it difficult to generalize (Adviento-Borbe et 

al. 2010; Chapuis-Lardy et al. 2007). For instance, when WFPS was consistently < 60%, 

Adviento-Borbe et al. (2010) found negative N2O fluxes in agricultural maize plots. N2O 
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consumption typically ranges from 0.01 μg m
-2 

h
-1

 to 10 μg m
-2 

h
-1

 (Adviento-Borbe et al. 

2010; Syakila and Kroeze 2011). Abiotic nitrate reduction via chemodenitrification may 

also be involved in the net consumption of N2O but these processes are not well 

understood (Chapuis-Lardy et al. 2007; Schlesinger 2013). There are many factors that 

are still unknown with regard to the controlling factors on N2O consumption in soils; 

consumption has been reported under variable conditions, making it difficult to 

generalize regarding the particular conditions which lead to N2O uptake (Chapuis-Lardy 

et al. 2007). 

2.4.2. Methane (CH4) 

 Methane is the second most important greenhouse gas (Connor et al. 2010) after 

carbon dioxide and has caused roughly 20% of the human-induced increase in radiative 

forcing since 1750 (Kirschke et al. 2013; Nisbet et al. 2014). In the early 2000’s methane 

concentrations seemed to be stabilizing, which was possibly linked to a decrease in, or 

stabilization of fossil fuel and microbial emissions (Kirschke et al. 2013). After a near 

decade of no-growth, methane concentrations increased by 8.3 +/- 0.6 ppb from 2007 to 

2008, with the largest increase occurring in the tropics (Nisbet et al. 2014). High 

temperatures in the artic, increased precipitation in the tropics (Dlugokencky et al. 2009), 

increased emissions from wetlands spurred by high temperatures in northern high 

latitudes in 2007, and fossil fuel burning, (Kirschke et al. 2013) have been listed as 

possible causes, but relative contributions are uncertain. 

 In 2010, methane concentrations reached 1,799 ± 2 ppb (Kirschke et al. 2013). 

The recent increase in methane emissions spurred important questions about global 
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causes, but in-situ monitoring is very limited. The sources and sinks for methane are 

complex, vary with latitude (Nisbet et al. 2014), and depend on soil organic matter 

content, temperature, soil moisture and populations of methanotrophic and methanogenic 

soil microorganisms (Harriss et al. 1982; Nesbit and Breitenbeck 1992; Steudler et al. 

1989). With a relatively short lifetime of 10 years in the atmosphere, there are 

opportunities to make a meaningful impact in reducing CH4 emissions. By developing a 

better understanding of the conditions that results in emissions and/or uptake of CH4 from 

bioretention, and the size of those fluxes, we can reduce emissions in the future.  

2.4.2.1. Methane Emissions 

 Methanogens, or methane producing bacteria, and methanotrophs, or methane 

using bacteria, are ubiquitous in soil (Nesbit and Breitenbeck 1992). Methanogenic 

bacteria form methane as the major product of their metabolism. They are strict 

anaerobes and obtain energy from H2 and CO2, formate (HCO2
-
), acetate (C3H2O3

-
), 

methanol (CH3OH),  trimethylamine (N(CH3)3), dimethylsulfide  ((CH3)2S) and some 

small alcohols (Nesbit and Breitenbeck 1992; Whitman et al. 2006).  Methanogenic 

bacteria prefer temperatures of more than 35 °C  (95 
o
 F) whereas methanotrophs prefer 

cooler temperatures (Higgins et al. 1981). When incubation temperatures were increased 

to 40°C (104 
o
F), Nesbit and Breitenbeck (1992) found that methane uptake was 

substantially reduced in both cultivated and non-cultivated soils.  

 Roughly 60% of global methane emissions are anthropogenic, with the 

remaining 40% coming from natural sources (Kirschke et al. 2013; Nisbet et al. 2014; 

Rhoderick and Dorko 2004; Steudler et al. 1989). Estimates of CH4 emissions vary 
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widely. Some broad sources of CH4 include wetlands, natural gas, thawing permafrost, 

and disturbance of methane hydrates (Nisbet et al. 2014). Methane emissions can be 

grouped into three categories:  thermogenic,  pyrogenic, and biogenic (Kirschke et al. 

2013). Thermogenic sources include geologic pools of methane which become vented to 

the surface during coal, oil and natural gas exploration and extraction. Pyrogenic sources 

include the incomplete combustion of biomass in wildfires, fossil fuels and biomass 

production (Kirschke et al. 2013). Biogenic sources of methane include methanogens 

which require anaerobic conditions. Examples of places that encounter such conditions 

are wetlands, rice paddies, dams, and digestive systems, organic wastes such as manure, 

sewage and landfills (Kirschke et al. 2013).  

2.4.2.2. Methane Uptake 

 The primary global sink for atmospheric CH4 is oxidation by hydroxyl radicals 

(OH), mostly in the troposphere, which accounts for around 90% of the global CH4 sink 

(Kirschke et al. 2013). In an aerobic environment, certain soil bacteria can also use 

atmospheric methane as an energy source, making them an important global sink (Kaye 

et al. 2004). Current research suggests that methanotrophic bacteria in aerated soils 

account for approximately 4% of the global methane sink (Kirschke et al. 2013), although 

CH4 uptake values from field studies vary widely (Harriss et al. 1982; Higgins et al. 

1981; Keller et al. 1986; Steudler et al. 1989). In aerobic soils, methane uptake between 

25 to 45 μg m
-2 

h
-1

 has been shown in grasslands, with highs of 55 μg m
-2 

h
-1

 during soil 

drying conditions (Kaye et al. 2004). When the water table drops enough to expose soils 

which had been previously saturated, methane consumption rates in wetland soils have 
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been shown to be as high as 100 μg CH4 m
-2

 hr
-1

  (Le Mer and Roger 2001). The highest 

consumption rates of methane in soils are thought to be where methanogenesis was 

recently producing higher concentrations than the atmosphere (Le Mer and Roger 2001), 

such as in recently drained or intermittently flooded soils (Nesbit and Breitenbeck 1992).  

 Methanotrophs are sensitive to water stress (i.e., saturation) and are thought to 

be more successful at soil depths where moisture levels are more stable.  Consumption 

often occurs  between the A and B horizons (Conrad 1996). Nesbit and Breitenbeck 

(1992) found that adjusting soil water contents between 25% of pore volume (860-1260 

kPa) and 75% (30-74 kPa) did not significantly affect the rate of CH4 consumption by 

methanotrophs, however, increasing soil water to 100% of pore volume, reduced initial 

activity by an average of 56%. The predominance of CH4 consumption at a greater soil 

depth may also be linked to the higher concentrations of NH4
+
 in surface soil layers, 

which can serve as an inhibitor of CH4 oxidation (Nesbit and Breitenbeck 1992).  

 In bioretention cells, Grover et al. (2013) found both a sandy loam, and 80% 

sandy loam with10% compost and 10% hardwood mulch to usually be a sink for CH4, 

with average uptake rates of between 4.2 μg m
-2 

h
-1 

and16.4 μg m
-2 

h
-1

. Large peaks in 

CH4 emissions were observed on occasion (~200 μg m
-2 

h
-1

) (Grover et al. 2013).   

2.4.3. Carbon Dioxide (CO2)  

 Soil organisms and plant roots release CO2 during microbial and root respiration 

(Mith et al. 2003). Soil respiration is thought to emit between 10 and 15 times more CO2 

than the burning of fossil fuels (Mith et al. 2003), and is the second largest terrestrial 

carbon flux (Bond-Lamberty and Thomson 2010). Soils store at least twice the amount of 
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CO2 that is in the atmosphere, which makes them an important global sink (Bond-

Lamberty and Thomson 2010). 

 Global circulation models (GCMs) have indicated that rising temperatures as a 

result of climate change may accelerate the decomposition of soil carbon through 

microbial respiration, however there is also evidence that respiration may be independent 

of mean annual temperatures (Giardina and Ryan 2000). Soil moisture, which enhances 

decomposition and mineralization (Brady and Weil 2008; Davis and Cornwell 1998; Van 

Meeteren et al. 2007), and vegetative productivity may also influence soil respiration 

(Bond-Lamberty and Thomson 2010). There is high spatial and temporal variability in 

soil respiration, and research that investigates the influencing factors in local soil 

conditions can ultimately help refine global models.  

 Smart and Peñuelas (2005) found that a spike in CO2 emissions from soils 

occurred after a simulated precipitation event, resulting from the displacement of soil 

pore gases by water. CO2 levels returned to pre-precipitation levels approximately 4 

hours later. The authors also suggested that fine rooted vegetation may have alloted more 

belowground carbon via rhizodeposition than larger woody roots, providing more 

substrate for respiration and higher CO2 emissions (Smart and Peñuelas 2005). Adviento-

Borbe et al. (2010) found that CO2 soil emissions ranged from 11 to 1015 mg CO2 m
-2

 h 
1
 

in agricultural experiments. Qiu et al. (2005) investigated the role of leaf litter 

decomposition on microbial respiration, and found that leaf litter and increased 

temperature increased CO2 emissions, with CO2 emissions ranging from 175 to 365 mg 

m
-2

 h
-1

. 



www.manaraa.com

 

 

 

41 

 

2.5. Research Goals and Hypotheses  

 The broad goals of this research are to (1) provide a feasible monitoring 

infrastructure design that can be adapted for other locations to monitor stormwater and 

bioretention performance; (2) better understand the factors controlling build-up and 

wash-off of stormwater pollutants from small paved road watersheds, and to predict the 

mass load of various constituents, as a function of precipitation depth; (3) predict how 

certain design features (i.e., vegetation and soil media) influence pollutant removal in 

bioretention systems; (4) assess how the soil media types presented here would perform 

under changing precipitation scenarios projected to affect the Northeastern U.S.; and (5) 

evaluate how these design features contribute to GHG emissions or uptake. The broad 

hypotheses in this research are as follows: 

1) Labile pollutant constituents will exhibit a higher MFF effect than non-labile 

constituents.  

2) A bioretention vegetation palette with numerous species and variable root depths 

will remove more nutrients and sediment than one with fewer species and deep 

roots.  

3) Bioretention soil media that includes reactive cations will remove more labile P 

than a conventional sand-based bioretention soil mixture.  

4) Increased precipitation and runoff will decrease nutrient and sediment retention 

by bioretention. 

5) Increased precipitation and runoff will increase the production of N2O and CH4, 

and decrease the production of CO2 within bioretention cells. 
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CHAPTER 3: MONITORING METHODS AND DESIGNS FOR 

EVALUATING BIORETENTION PERFORMANCE 
 

Amanda. L. Cording 

Keywords: Stormwater, Bioretention, Monitoring Methods, Construction, Hydrograph 

 

Abstract 

 

Bioretention systems provide exciting opportunities to remove harmful pollutants from 

stormwater, but there are still many unknowns regarding their strengths and limitations. 

Monitoring can provide vital feedback to design engineers, ultimately helping to improve 

hydrologic and pollutant removal performance, lower costs, and determine long-term 

effectiveness and maintenance requirements, yet there are very few bioretention systems 

that have been monitored in the field. The goal of this research is to reduce the barriers to 

monitoring bioretention, by providing a detailed account of the inflow and outflow 

monitoring system infrastructure installed at the University of Vermont Bioretention 

Laboratory, which can be adapted to achieve monitoring goals in other settings. Ninety-

degree v-notch and compound weirs equipped with differential pressure transducer 

probes were used, in the inflow and outflow, respectively, to relate water height to flow 

rate for eight bioretention cells. This allowed for the conversion of pollutant 

concentration to mass for each water sample. Monitoring was time-based, with discrete 

samples taken in rapid succession to span the inflow and outflow hydrographs. This 

ultimately allowed for the calculation of pollutant mass removal on an equal volume 

basis.  

 

 

3.1. Introduction 

 Stormwater runoff contributes to eutrophication (U.S. Environmental Protection 

Agency 2008), which is the most prevalent global water quality impairment  (The United 

Nations 2015). The cost of freshwater eutrophication in the U.S. is estimated at $2.2 

billion per year (Dodds et al. 2009).  Biological retention, or “bioretention,” is a 

stormwater management technique that is currently being encouraged as a Best 
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Management Practice (BMP) by federal regulators, as a part of the National Pollution 

Discharge Elimination System (NPDES) program (National Research Council 2008).  

The NPDES program is under the umbrella of the Clean Water Act (CWA) and is the 

primary vehicle through which the federal government regulates the quality of the 

nation’s waterbodies (National Research Council 2008).  Despite being widely promoted, 

and required in some instances, there are still many unknowns regarding the strengths, 

limitations, and resiliency of bioretention systems (Lefevre et al. 2015; Mangangka et al. 

2014).  

 Bioretention systems, also known as rain gardens (Davis 2008; Dietz and 

Clausen 2006; Hunt et al. 2008), biofilters (Zinger et al. 2013), and bioswales (Collins et 

al. 2010), are largely composed of soil media and vegetation that are intended to remove 

stormwater pollutants while also retaining and detaining stormwater volumes and 

reducing peak runoff velocities to more closely mimic pre-development hydrology 

(Lefevre et al. 2015). Bioretention systems are one type of physical practice listed within 

the broader category of alternative stormwater infrastructure termed Green Stormwater 

Infrastructure (GSI) (Nylen and Kiparsky 2015; Palmer 2012) or Water Sensitive Urban 

Design (WSUD) (Alias et al. 2014; Blecken et al. 2009; Taylor and Wong 2002; Wong 

2006) which falls under the broader alternative approach to traditional land development 

called Low Impact Development (LID) (Brown and Hunt 2011; Dietz 2007). 

 Inside and outside the regulatory sphere, these techniques are becoming 

increasingly popular, with residents and developers expressing an interest in these 

aesthetically pleasing, eco-friendly alternatives to traditional stormwater treatment 
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systems (Collins et al. 2010; Henderson et al. 2007; Stone 2013). The presence of 

bioretention systems in a landscape also provides an opportunity to engage the 

community in a dialogue about water resources and natural water filtering processes, 

while improving habitat, and encouraging the use of native and pollinator friendly plants 

(Hurley and Forman 2011). 

 However, the installation of these systems is outpacing the research regarding 

the comparative effectiveness of specific design features in achieving the goals of 

bioretention (Law et al. 2008), which include (a) reduced stormwater volume, (b) reduced 

and attenuated peak flow rate, (c) reduction in targeted pollutants, (d) improved aesthetics 

and, (e) environmental sustainability (Davis et al. 2009). Of the limited number of 

bioretention systems that have been monitored, many have shown inconsistent 

performance (Davis et al. 2009; Dietz 2007; Geosyntec Consultants and Wright Water 

Engineers 2012; Lefevre et al. 2015).   

 Some of the many design features that affect the pollutant removal performance 

of bioretention and other GSI systems include: residence time (Collins et al. 2010; Hurley 

and Forman 2011; Kadlec et al. 2010; Rosenquist et al. 2010);media depth (Brown and 

Hunt 2011); vegetation type, root depth, and root architecture (Claassen and Young 2010; 

Claytor and Schueler 1996; Collins et al. 2010; Davidson et al. 2000; Davis et al. 2009; 

Kadlec et al. 2010; Lucas and Greenway 2008; Read et al. 2008); organic matter content 

(Bratieres et al. 2008; DeBusk and Wynn 2011; Fassman et al. 2013; Leytem and 

Bjorneberg 2009; Thompson et al. 2008); use of mulch (Bratieres et al. 2008; DeBusk et 

al. 2011; Dietz and Clausen 2006); percent sand, silt, and clay (Liu et al. 2014); chemical 
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characteristics of the soil media (e.g., amount of iron, calcium, and aluminum) (Arias et 

al. 2001; Groenenberg et al. 2013; Vance et al. 2003); ponding depth, hydraulic 

conductivity, infiltration rate (Thompson et al. 2008); and the inclusion of features such 

as internal water storage zones (IWS) (Chen et al. 2013; Dietz and Clausen 2006; Hunt et 

al. 2006; Kim et al. 2003). Operation and maintenance and care taken during construction 

to avoid soil compaction are also critical factors that will affect the long term 

performance of these systems (Brown and Hunt 2011; Dietz and Clausen 2006).  

  Monitoring can provide vital feedback to design engineers, ultimately helping 

to improve performance, lower costs, and determine long-term effectiveness and 

maintenance requirements of these systems (Lenth et al. 2008). There are very few 

detailed examples of bioretention monitoring infrastructure, and virtually no guidelines 

as to how the infrastructure can be incorporated into project designs and placed during 

bioretention construction, or what considerations are important in developing sampling 

regimes (Geosyntec Consultants and Wright Water Engineers 2013; Law et al. 2008).  

 The goal of this chapter is to describe a clear and effective bioretention 

monitoring approach that is incorporated from project outset. The availability of this 

information can help reduce the barriers to project monitoring and foster improvements in 

future bioretention designs. Bioretention monitoring infrastructure used at the University 

of Vermont (UVM) Bioretention Laboratory, including design considerations and steps 

taken to install the equipment during construction, will be described. Further, the 

sampling regime and automated sampling equipment used to capture runoff from small 
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paved road watersheds, in the context of our research goals, is outlined in detail, to 

provide a reference for future monitoring projects.  

 

3.2. Site Description 

 In 2012, the University of Vermont Bioretention Laboratory was constructed on 

the UVM campus, in Burlington, VT. The research site consists of eight small paved road 

sub-watersheds (or drainage areas) with areas ranging from 320 ft
2
 (29.729 m

2
) to 1,293 

ft
2
 (120.12 m

2
). The road is one of the main thoroughfares for bus and vehicular traffic 

entering and exiting the UVM campus. Sub-watershed boundaries were delineated from 

the crown of the road to a granite curb at a 45-degree angle, culminating for each 

bioretention cell at a point that corresponds with a trapezoidal curb-cut into which runoff 

flows. For each cell, stormwater is directed from the road surface, through the cub-cut, 

and along a narrow conveyance strip, ranging from 3.72 m
2
 to 19.20 m

2
, lined with a 

rubber EPDM membrane, and covered with stone (with diameters ranging from 

approximately two to four inches (5.08 cm to 10.16 cm)) prior to entering the 

bioretention cell inflow monitoring equipment.  

 The eight bioretention cells are rectangular, equally-sized, parallel to the road, 

and have dimensions of 4 ft. (121.92 cm) wide x 10 ft. (304.80 cm) long x 3 ft. (914.40 

cm) deep with approximately 6 inches (15.24 cm) of ponding depth. The cell bottom and 

sides are lined with a EPDM impermeable rubber liner, and contain an underdrain at one 

end, which ultimately connects back to the existing storm sewer network. Each of the 

bioretention cells has monitoring infrastructure at the entrance (inflow) and exit 
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(outflow), which will be described in further sections. The layout of a typical cell is 

shown in Figure 3. The bioretention cells used in this research contained two soil profile 

designs, as shown in Figure 4.  

 
Figure 3. Layout view of a typical bioretention cell at the UVM Bioretention Laboratory.  

 

 

Figure 4. Bioretention Profiles: Conventional Media (left), Sorbtive Media™ (right). Image Credit: J. 

Schultz, C. Brackett, J. Nummy, O. Lapierre. 
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3.3. Monitoring Bioretention 

 The design objectives for the monitoring infrastructure and sampling protocol 

used in this research were aimed at characterizing stormwater mass loads from small 

paved road watersheds, at multiple points during the inflow and outflow hydrograph.  A 

hydrograph is a plot of flow rate (Q), or the changing velocity of water, over time 

(Hornberger et al. 1998). Flow rate is required for the conversion of concentration-based 

measurements to mass or load (U.S. Environmental Protection Agency 1997), and is 

particularly useful in numerically describing the erosive and pollutant transport potential 

of stormwater (Bertrand-Krajewski et al. 1998). Water with increasing velocities can 

transport increasing particle sizes based on Stokes Law, affecting the proportion of 

dissolved and particulate pollutants in a given sample (Glysson et al. 2000).   

 Flow rate is determined by measuring the height of water upstream of a 

hydraulic control structure, such as a flume (Davis 2007; Hunt et al. 2006) or weir 

(Hathaway et al. 2012; Hunt et al. 2006; Komlos and Traver 2012; Wemple et al. 2007), 

that produces a crest of falling water in front of it.  The height of water behind the control 

device can be measured with a pressure transducer (DeBusk and Wynn 2011; Dietz and 

Clausen 2005; Hunt 2003; Kosmerl 2012) or a bubble flow meter (Davis 2007). The 

height measurements are used to calculate flow rate using height to discharge tables or 

equations (U.S. Bureau of Reclamation 2001). 

3.3.1. Inflow Monitoring Infrastructure  

 The incoming stormwater from each sub-watershed on the research site was 

directed into a small wooden box, constructed of weather resistant cedar boards, equipped 
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with a 90-degree v-notch weir, hereinafter referred to as a “weir box.” A 90-degree v-

notch weir is recommended for small flows, with a thickness of between 0.762 mm to 

2.03 mm at the notch, to prevent water from clinging to the weir (U.S. Bureau of 

Reclamation 2001). Weir plates are typically attached to an inflow collection device, 

which can be made of any material that is non-permeable, long-lasting and largely 

chemically inert. Concrete is often used for large channels (U.S. Bureau of Reclamation 

2001). The weir plates in this research were attached the aforementioned wooden weir 

box; they were constructed of 0.0625 inch (1.59 mm) thick stainless steel (Tri-Angle 

Metal Fabricators, Milton, VT). The cedar was easy to work with and provided a simple, 

cost effective alternative to concrete. The stainless steel weir plates were fitted into a 

narrow vertical groove cut in the weir box. All seams and points of contact were filled 

with waterproofing silicone and tested for water tightness throughout each monitoring 

season. These small devices (Figure 5) were designed to break incoming stormwater into 

incremental segments that could be sampled in rapid sequence to detect any changes in 

pollutant mass load over the course of the storm hydrograph.  

 The average weir box dimensions (n = 8) are 37.11 cm long and 20.51 cm wide 

(B) (Figure 5-6). The average height to the bottom of the v-notch (P) is 5.58 cm. The 

height from the v-notch to the max height (H) is 7.62 cm. Maximum capacity is reached 

(H+P) at 13.20 cm. Approximately 4.25 L (0.150 ft
3 

or 0.00425 m
3
) are stored beyond the 

low-point of the notch and 10.05 L (0.3548 ft
3 

or 0.01005 m
3
) can be held at maximum 

capacity. Any level over this height was considered an overflow event. The dimensions 

of each individual weir box are listed in Table 29, in the Appendix.  
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Figure 5. 90-degree thin plate v-notch weirs (foreground) 

 

 
 Figure 6. Weir box dimensions reference showing pressure transducer probe (not to scale).  

 

 The American Society for Testing and Materials (ASTM) recommendations 

(D5242) for 90-degree v-notch weirs were used to determine the weir dimensions, with 

modifications being made where necessary, to achieve the monitoring goals of this study.  

The ASTM weir guidelines were developed for large pipes and channels, such as streams 

or wastewater conveyance systems, which transmit water with discharges between 0.05 

and 4 cfs (0.001 m
3 

 to 0.1 m
3
)  (U.S. Bureau of Reclamation 2001). By contrast, the peak 

flow rates and runoff volumes expected from the small drainage areas on the UVM 

research site constrained the weir box sizing, but were ideal for detecting small changes 
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in stormwater quality. In the following section, some of the key design considerations for 

the inflow weir boxes will be discussed in further detail.  

3.3.1.1. Design Considerations 

  The water that flows over the notch, in a v-notch weir, needs to pitch freely for 

a given distance (P), in order to create an air filled nappe under the flow (U.S. Bureau of 

Reclamation 2001). The minimum recommended distance for (P), is 3.6 inches (9.14 cm) 

(Figure 6). In this research, (P) on the box itself was 5.58 cm, yet the total distance the 

water had to freefall was 12.08 cm, due to the presence of a distribution trench under the 

crest of the falling water.   

 In order to evenly distribute water longitudinally across the bioretention cells, 

and avoid scouring effects that are commonly observed at the entrance to bioretention 

cells (Claytor and Schueler 1996), a distribution channel was inserted immediately below 

the weir boxes (Figure 3). This was built by cutting a PVC rain gutter in half lengthwise, 

drilling perforations within it and, placing it in the top of the soil media such that the 

gutter’s side walls were level with the top surface. The depth of the distribution channel 

was 6.50 cm.  

 The height of the water inside the inflow weir box was measured with a 

Teledyne™ ISCO 720 differential pressure transducer, which was compatible with the 

Teledyne 6700 series automated samplers used in this study. The pressure transducer 

accurately measures water levels between 0.1 ft (3.048 cm) and 10.0 ft of (304.8 cm), 

when temperatures are between 32 
o
F and 120 

o
F, with a minimum sensitivity of 0.01 ft 

(0.3048 cm) (Teledyne ISCO 2012). The automated sampling equipment was 
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programmed to begin only when the water height reached a minimum of 0.21 ft (6.50 

cm) above the bottom of the weir box, in order to avoid any potential under or over 

estimations of flow rate (Harmel et al. 2002). This threshold was equivalent to 0.03 ft  

(0.914 cm) from the v-notch, which is the location from which the pressure transducer 

measures the baseline water height (Harmel et al. 2002). 

3.3.1.2. Developing a Rating Curve  

 The height of water behind the weir is often related to discharge, or flow rate, 

using height to discharge tables, or a version of the Kindsvater-Shen equation (Kulin and 

Compton, 1975) (Equation 1).  

  

           (
 

 
)      

 
  

 

(1) 

Where,  

Q is the discharge or flow rate over the weir (cfs) 

C is the effective discharge coefficient 

Θ is the notch angle 

h is the head over the notch in the weir (ft) 

k is the head correction factor (ft) 

 

The empirical constants used to determine flow rate in Equation 1 (i.e., C and K) were 

developed for large volumes and are highly influenced by the weir geometry. In this 

research, each weir was, therefore, individually rated, or evaluated, to determine the 

appropriate discharge equation (U.S. Bureau of Reclamation 2001). In studies where 

storm flows are expected to be large and weir geometry is in accordance with standard 

ASTM weir guidelines, this step may not be necessary. 

 A rating curve, or stage-to-discharge graph, was developed manually for each 

weir by taking simultaneous water level and volumetric measurements over time, in the 
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lab (U.S. Bureau of Reclamation 2001). The pressure transducer probe and sample line 

were placed in the weir box to keep the displacement factor equal to what would be 

experienced in the field. The weir box was filled with water until it overflowed, then 

allowed to stabilize, forming a meniscus at the bottom of the notch (Davis and Cornwell 

1998).  The water level was recorded as 0.00 ft in the autosampler software, to establish a 

baseline from which the pressure transducer would measure height (Harmel et al. 2003). 

The inflow flow rate was gradually increased until the water reached and maintained a 

specified height above the notch. A minimum of five timed volumetric measurements 

were taken at five different water heights, spanning the low and high flow thresholds on 

the weir. The average of the five measurements at each water height was used to 

determine the discharge at that height. This process was repeated for each of the eight 

weirs. Equation 2 was used to determine the values of the weir coefficient (C) and (n). 

The logarithmic form of this equation (Log (Q) = n* log (H) + log (C)) has the linear 

form of Y = mx + b, which allowed the values of (C) and (n) to be obtained by plotting 

the value of (Q) and (H) on a log-log plot. 

 
 

Q=CH
n 

 

(2) 

Where, 

Q is the flow rate over the weir (ft
3
s

-1
) 

C is the coefficient of discharge, or weir coefficient 

H is the depth of water (head) behind the weir (ft) 

n is an empirical exponent (dimensionless) 

 

The equation of the line provided the values for n (slope) and C (y-intercept). The rules 

of log were employed to convert log (C) to C. The discharge equations for the eight weirs 

are shown in Table 28, in the Appendix.   



www.manaraa.com

 

 

 

54 

 

3.3.2. Sampling the Inflow Hydrograph 

 The goal in any water quality monitoring program is to collect samples that 

encompass the spatial and temporal variability of the site conditions (Harmel et al. 2003). 

When designing bioretention systems for the purpose of monitoring, the overall research 

questions, bioretention drainage configuration, final reportable units (e.g., concentration 

or mass), hydraulic conductivity, specific yield of the bioretention soil media, local rules 

and regulations, budgetary and logistical constraints, and proximity to underground 

utilities are important considerations (Law et al. 2008).  

 There are many different methods to sample stormwater, with time-based and 

flow-based sampling being the two most commonly used (Harmel et al. 2003). Time-

based sampling is most appropriate for research in small watersheds, where land cover is 

fairly homogeneous (Harmel et al. 2003; Sansalone and Cristina 2004). Such conditions 

will produce a hydrograph that can be sampled with equally spaced samples over its 

rising limb, peak, and falling limb in an ideal storm (Alias et al. 2014; Harmel et al. 

2003). Alternatively, flow-based sampling allows for samples to be taken after a specified 

volume of water has passed (Law et al. 2008) and is more robust to changing 

precipitation intensities over time, and when site conditions are likely to alter flow rates, 

such as those which contain irregular surfaces, diverse land use, or when drainage areas 

are larger in size (Harmel et al. 2003).  

 In this research, discrete, time-based samples were collected at multiple 

locations throughout the runoff hydrograph, from small, paved, road sub-watersheds. The 

timing of inflow samples was based on estimates of peak inflow discharge rates for the 
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eight watersheds, which were determined using the time of concentration, rainfall 

intensity duration frequency (IDF), curves and the rational method, which are described 

in the following sections. These values were then used to determine the length of time 

required to take representative samples at multiple intervals throughout an idealized 

hydrograph.  The sub-watersheds in this study were modeled as homogeneous paved road 

surfaces, using a runoff coefficient for paved asphalt.  

3.3.2.1. Time of Concentration  

 The Time of Concentration (Tc) estimates how long it will take a drop of water 

to travel from the most hydrologically remote part of the watershed, to the monitoring 

location, using the runoff coefficient, total distance, and slope as the main variables, as 

shown in Equation 3 (Kang et al. 2008; King et al. 2005). The distance from the farthest 

corner of the largest watershed to the monitoring device, in this research was 

approximately 104 ft (31.7 m). A runoff coefficient of 0.95 for impervious asphalt (Allen 

Burton and Pitt 2002) and a slope value of 0.01 ft/ft were used to approximate the time of 

concentration. The time of concentrations from the smallest to largest watersheds ranged 

from 4.73 minutes to 8.27 minutes. The Tc value was then used to determine the 

approximate rainfall intensity, using a rainfall IDF curve, and the rational method.  

 

    
              

          
 

 

(3) 

 

Where,  

Tc is the time of concentration (min)  

G is equal to 1.8 (FAA method, constant) 

C is the runoff coefficient using the rational method (dimensionless) 

L is the longest distance from the fixed location within the watershed (ft) 

S is the slope of the watershed (ft ft
-1

or m m
-1

) 
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3.3.2.2. Estimating Peak Discharge with Intensity Duration Frequency (IDF) Curves 

 Rainfall IDF curves depict the relationship between precipitation intensity and 

duration, given a selected frequency of return for a specific climatic region (Claytor and 

Schueler 1996; Davis and Cornwell 1998). In this research, a rainfall IDF curve for 

Chittenden County, Vermont was used (Figure 7), with a 1-year recurrence interval, from 

5 minutes to 120 minutes (Northeast Regional Climate Center Precipitation Data). The 

rainfall intensities, which corresponded with the time of concentrations from each sub-

watershed, ranged from approximately 3.32 in hr
-1

 (2.34 x 10
-5

 m s
-1

) to 2.57 in hr
-1

 (1.81 

x 10
-5

 m s
-1

). The rainfall intensity for each watershed was used to estimate peak 

discharge with the rational method, as shown in Equation 4.  

 
Figure 7. Rainfall Frequency Intensity Duration Curve for Chittenden County, VT. 
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           (4) 

Where, 

Q is the peak discharge (ft
3 

s
-1

 or m
3
 s

-1
) 

Cf is the runoff coefficient (dimensionless) 

Ci is the rainfall intensity (ft s
-1

 or m s
-1

) 

A is the drainage area (ft
2
 or m

2
) 

 

 The rational method is most appropriate for small watersheds, which are highly 

impervious (Natural Resources Conservation Service 1986). The assumptions of the 

rational method are as follows: (a) peak flow rate is a direct function of the drainage area 

and average rainfall intensity during the time of concentration, (b) rainfall is uniformly 

distributed over the paved road sub-watersheds, (c) rainfall intensity remains constant 

during the time of concentration, and (d) the runoff coefficient is constant and consistent 

throughout the sub-watersheds (Natural Resources Conservation Service 1986). 

 The peak flow rate occurs when the total watershed area is contributing runoff  

(Davis and Cornwell 1998). The peak flow rate values were used to estimate the total 

length of time needed to sample a specific rainfall depth (Equation 5).  

 

     
                               

               
 

 

(5) 

 

 

The rainfall depth selected was 0.90 inches (0.0229 m), which is a common water quality 

volume to be treated with stormwater best management practices (Vermont Agency of 

Natural Resources 2002b).  

3.3.2.3. Monitoring Duration for the Inflow Hydrograph  

 The time for the peak flow rate to reach the monitoring equipment in the eight 

sub-watersheds on this research site were between approximately 17 and 21 minutes. A 
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multiplier of two was applied to the time, in order to account for the falling limb of the 

hydrograph (Table 30, Appendix). A larger multiplier may be warranted if the 

assumptions used to determine the peak flow rate cannot be fully met. 

 The Teledyne ISCO 6700 series automated samplers can hold a maximum of 

twenty four 1-L bottles. To encompass the inflow hydrograph, the inflow samples from 

each cell were taken every two minutes for 48 minutes (n = 24), when inflow flow rates 

were consistently above the minimum sampling threshold of 0.21 ft (6.50 cm). If the 

inflow flow rate dropped below the minimum threshold, sampling stopped, and resumed 

if levels rose again, until all 24 bottles were filled. An example inflow hydrograph from 

the site is shown in Figure 8.  

 
Figure 8. Example inflow hydrograph, showing samples (n=24) taken from watershed 6, 7/3/14.  

 

3.3.3. Outflow Monitoring Infrastructure  

 Outflow monitoring from bioretention can be difficult, given the subterranean 

infrastructure requirements of sampling from systems that contain under drains. A few of 

the systems which can be used to monitor the subsurface of bioretention cells include 

observation wells or piezometers with pressure transducers  (DeBusk and Wynn 2011; 

Kosmerl 2012), lysimeters (Komlos and Traver 2012), collection chambers with a pump 
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(Dietz and Clausen 2005), and in-pipe weir systems combined with pressure transducers 

or bubble flow meters (Davis 2007; DeBusk and Wynn 2011; Roseen et al. 2009).  

 Although infiltration is often a goal in bioretention projects, in this research, the 

native subsoil material was non-homogeneous construction fill with a thick clay layer 

underneath. Shallow depth to groundwater was also a concern. Given these site 

constraints, and our interest in developing water and nutrient budgets, the cells were 

enveloped with EPDM rubber liners, which enclosed the bottom and sides of the cells, 

and the lower horizon of the bioretention cells were equipped with underdrains, which 

flowed into our outflow monitoring sampling systems and ultimately connected to the 

existing storm drainage network. A profile view of the outflow monitoring infrastructure 

is shown in Figure 9. 

  At the outflow of each bioretention cell, a Thel-Mar™ compound weir was 

installed at one end of a 6-inch diameter PVC pipe and connected to a 6-inch PVC tee-

pipe, which allowed access to the pressure transducer and sample line. A reducer pipe 

was used to create a shallow sidewall, behind which water pooled enough to take a 

sample. The 4-inch pipe from the monitoring section was connected to the perforated 

underdrain at the far end of each cell. In this configuration, the depth of standing water at 

the weir notch inside the outflow horizontal monitoring pipe was approximately 1.60 

inches (4.064 cm), holding a volume of 1.54 L. The sampling tube diameter was 0.550 

inches (1.40 cm). 
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Figure 9. Outflow sampling design profile. 

 

 The type of strainer that is typically used over the ISCO autosampler suction 

tube was too big to fit in the outflow sampling area, but was not warranted, for large 

sediment was not present in the outflow water from the bioretention cells. The monitoring 

infrastructure was accessed via the 24-inch (0.61-meter) cylindrical riser, which allowed 

for access to the outflow so that the suction tube and pressure transducer to be clipped 

into place at the bottom of the sample area in order to ensure the consistent accuracy of 

head measurements during high flow rates. The probe clip in this design is located on the 

bottom of the t-pipe, back just far enough that it required an individual to enter the sump 

area, in order to clip the probe and suction line into place, to ensure that water height 
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measurements were taken at a minimum of 3-4 times the maximum expected height of 

water above the weir notch (U.S. Bureau of Reclamation 2001). Other designs might be 

able to eliminate the need to manually install the probe by using a long tool, if the probe 

clip could be placed directly underneath the access manhole cover.  

 This outflow bioretention monitoring infrastructure accurately captured flow 

rates between 0.0001 cfs and 0.0170 cfs (0.0028 L s
-1

 and 0.4814 L s
-1

). This range 

adequately encompassed the outflow flow rates experienced in the field in most cases, 

with low flows being more difficult to capture than high flows. The outflow weir 

equation was developed from the table of level to discharge values provided by the Thel-

Mar company (Equation 6). 

 Q=3.416646 * H
2.5515

 (6) 

Where, 

Q is the flow rate (ft
3
 s

-1
) 

H is the height or level of water behind the weir (ft) 

 

3.3.4. Sampling the Outflow Hydrograph 

 Sampling the effluent from bioretention requires a number of considerations. 

For instance, reduction of stormwater volume by bioretention has been shown to be as 

high as 90% (DeBusk and Wynn 2011; Hunt et al. 2008), which can limit the number and 

volume of outflow samples collected. DeBusk and Wynn (2011) collected outflow 

samples from a perforated underdrain, above a clay layer installed to decrease 

groundwater infiltration, and, of the 28 storm events (DeBusk and Wynn 2011), only five 

outflow samples could be collected. In bioretention systems designed to infiltrate into 

surrounding soils, outflow volumes will be affected by the internal soil water holding 
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capacity, and the characteristics of the surrounding soil media (e.g., water holding 

capacity and hydraulic conductivity) (DeBusk and Wynn 2011; Dietz 2007; Michigan 

Department of Environmental Quality 2008). For instance, Brown and Hunt (2011) found 

approximately 39% of runoff exfiltrated from loamy-sand soils at a depth of 2.95 ft (0.90 

m).  

 In lined bioretention systems that do not have any infiltration to surrounding 

soils or to groundwater, the total volume exiting the system is largely a function of the 

storm volume and the internal water holding capacity of the soil media. Vegetated 

bioretention systems can also result in reduced volume in the soil matrix between storm 

events due to evapotranspiration (DeBusk and Wynn 2011). 

3.3.4.1. Estimating Hydraulic Conductivity 

 The lined bioretention cells in this research did not have any infiltration to 

groundwater or surrounding soils. The outflow sampling regime was time-based, and 

estimated using the mean vertical and horizontal hydraulic conductivity of the 

bioretention cell, (Freeze and Cherry 1979; Hornberger et al. 1998), using Equation 7.  

 

   
 

∑  
  
  

 
   

 

 

(7) 

 

 

 

Where,  

Kz is the equivalent hydraulic conductivity for the layered system (ft s
-1

 or m s
-1

) 

D is the total cumulative depth of the layers (ft or m) 

di is the depth of a given layer (ft or m) 

ki is the hydraulic conductivity of a given layer (ft s
-1

 or m s
-1

) 
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Equation 7 assumes that flow is vertical, and directed from low to high conductivities in 

an unsaturated media. In systems that are transversely isotropic, having regions of lower 

hydraulic conductivity or relative impermeability (e.g., a liner or clay layer), horizontal 

flow along the X-plane may ensue (Freeze and Cherry 1979). In which case, the 

horizontal hydraulic conductivity of the media at that location will need to be considered 

(Equation 8).  

 

    ∑
    
 

 

   

 

 

(8) 

 

 

Where,  

Kx is the horizontal hydraulic conductivity (ft s
-1

 or m s
-1

) 

di is the depth of a given layer (ft or m) 

Ki is the hydraulic conductivity of a given layer (ft s
-1

 or m s
-1

) 

d is the horizontal distance of the given layer (m) 

  

 In the bioretention cells used at the UVM Laboratory, the mean vertical 

hydraulic conductivity was estimated to be approximately 3.64 x 10
-4

 m s
-1 

(131.04 cm hr
-

1
 or 51.59 in hr

-1
). This estimation is similar to the infiltration rates found by Thompson 

et al. (2008) for sand and compost mixes (150 to 178 cm hr
-1

), but is much higher than 

the minimum recommended rate of  2.54 cm hr
-1 

(Davis et al. 2009; Washington State 

University Pierce County Extension 2012). A table containing the estimated hydraulic 

conductivity of each soil media layer in the bioretention cells in this research is listed in 

Table 2. The influence of vegetation on hydraulic conductivity was not considered in this 

model and the proprietary media (i.e., Sorbtive Media™), which was used in two of the 

cells, was modeled as medium sand. 

 



www.manaraa.com

 

 

 

64 

 

Table 2. Estimating the vertical hydraulic conductivity of the UVM bioretention cells 

Bioretention Media Depth (m) Hydraulic Conductivity (m/s) di/ki  

Sand and Compost  

60:40 Mixture 

0.3048 1.50E-04 

 

2.03E+03 

Medium Sand  0.3048 6.90E-04 4.42E+02 

Pea Gravel 0.0762 6.40E-03 1.19E+01 

Gravel 0.2286 9.14E-03 2.50E+01 

Total di/ki  = 2.51E+03 

Total Depth = 0.9144 m 

Kz (m/s) = 3.64E-04 

 

3.3.4.2. Monitoring Duration for the Outflow Hydrograph  

 The total time needed to monitor the outflow hydrograph was calculated as the 

sum of the time to travel the vertical distance within the bioretention cell media and the 

time to travel horizontally across the liner, from the most remote point in the bioretention 

cell to the outflow monitoring equipment, as shown in Equation 9. The total time 

necessary to monitor the runoff from a 0.9-inch storm event was found to be 

approximately 90 minutes, which included the time for runoff to travel across the paved 

road surface. 

 

  
   

        
 

   

        
 

 

(9) 

 

 

Where, 

T is the time for the outflow peak to reach monitoring equipment (s) 

Aw is the watershed area (m
2
) 

D is the selected rainfall depth (m) 

Kz is the cumulative vertical hydraulic conductivity (m s
-1

) 

Kx is the horizontal hydraulic conductivity (m s
-1

)
 

ABR (z) is the vertical cross-sectional area along the Y-plane (m
2
) 

ABR (x) is the vertical cross-sectional area of the layer directly above the flow impeding 

layer along the X-plane (m
2
) 
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The automated sampling program was set to take samples every 4 minutes for 96 

minutes, producing 24 samples. An example of the outflow hydrograph is shown in 

Figure 10. Actual sample number varied based on the characteristics of the storm event, 

with smaller storms producing fewer samples. 

 
Figure 10. Example Outflow Hydrograph, Watershed 8, 7/28/14 

 

3.3.5. Normalizing Baseline Sampling Conditions 

 In order to accurately determine the initial concentration of water being sampled 

in the early part of a storm event, the antecedent conditions inside the monitoring 

infrastructure needed to be normalized prior to an event. Organic debris, nutrients, and 

sediment were removed from the monitoring infrastructure as close to the time before a 

storm event as possible. The inflow and outflow weirs were filled to the v-notch and 

allowed to stabilize, so that the automated sampler could be programmed to read this 

level as zero. This set the baseline for the pressure transducer. 

 The standing water in the inflow weir boxes prior to an event, after the weir 

boxes had been cleaned, was approximately 4.25 L, minus that which was displaced by 

the pressure transducer and suction probe. The volume was increased to 4.95 L prior to 
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being triggered for sampling, of which approximately 14% (0.696 L) was new 

stormwater. After an ISCO is triggered, it begins a process of purging the suction lines 

with water from the sample area to remove any water the sample lines that might remain 

from a previous event. The time it takes for the machine to register that it has been 

triggered, take the water in, purge the lines, and release it back out again is approximately 

one minute (Harmel et al. 2003). Meanwhile, stormwater moves through the weir box, 

further mixing and displacing the water used to clean the system. Water moving at an 

average inflow flow rate of 0.1 L s
-1

 would replace the 4.95 L of water in the weir box in 

49.5 seconds. Flow rate and sample measurements are taken together, one minute 

increments after the sampler is triggered. Because the time from when the equipment is 

triggered to when the first water sample is taken, is greater than the time to replace the 

water used to clean the weir box, its influence was deemed insignificant. The 

progressively increasing flow rate in the rising limb of the hydrograph, and 

corresponding volume moving through the monitoring system were also likely to dwarf 

any dilution effects from the weir-rinse water.  

 

3.4. Bioretention Construction Steps and Considerations 

 Unlike the cases in which a bioretention system is retrofitted for the purpose of 

monitoring after it has already been installed, the UVM Bioretention Laboratory was 

specifically constructed to facilitate intensive monitoring of various parameters.  

Construction of this project was completed by an engineering and construction company 

(EcoSolutions, LLC.) with specialized experience in bioretention construction; however, 
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this will not likely always be possible. The specific steps that were critical to the 

successful installation of the bioretention cells are described in detail herein.  

3.4.1. Excavation 

 Prior to construction, the bioretention cell corners, catch basins, and drainage 

lines were laid out on the project site with spray paint and stakes and all underground 

utilities (both private and public) were noted. Not all public utility location services 

identify private lines and the cost and danger of coming into contact with underground 

infrastructure during construction can be very high, therefore it is important to carefully 

check as-built drawings for any utility lines that may not have been marked by dig-safe or 

other utility organizations.  

 Construction began by digging the drainage trench and area around the catch 

basin with a mini-excavator. This machine ensured the accuracy of width and depth cuts 

due to its smaller bucket size. The drain trench was laser-leveled to ensure proper 

drainage slope and topped with a thin layer of bedding sand on which the pipe would be 

laid. A hole was drilled in the existing catch basin, which was connected to 4-inch PVC 

drainage pipe laid in sections, back to the location of the bioretention cells. The majority 

of the trench was backfilled with material previously removed during excavation, while 

the end of the drainage pipe remained uncovered until the bioretention cell was excavated 

and its underdrain could be attached to the monitoring equipment.  

 Site-specific conditions such as soil type, previous land use, and close proximity 

to utilities will heavily influence the time and cost needed for excavation. The underlying 

material at this site consisted of clay and disaggregated construction fill, which was not 
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noted on as-built plans, and took much longer than expected to dig through. During 

excavation, depth measurements were taken every few minutes to ensure excavation was 

consistent with designs and that underlying utilities were not in jeopardy.  

3.4.2. Installation of Outflow Monitoring Equipment 

 The bioretention cell area and adjacent outflow monitoring area were excavated 

as one large rectangle. The monitoring infrastructure was pre-assembled on-site, and 

consisted of a vertical two-foot diameter sump, approximately 6 feet tall, with cut-outs at 

the bottom to fit over the monitoring piping configuration (Figure 4). The bottom of the 

sump was capped and all connections between the sump and monitoring configuration 

were sealed for water tightness. Once the bioretention cell and outlet monitoring area had 

been excavated, the pre-assembled monitoring equipment was gently lowered into the 

cavity. The Thel-Mar™ weir was then fitted inside the end of a six-inch pipe protruding 

horizontally from the sump and final adjustments were made using the bubble level 

located at the top of the weir. Further disturbances to the monitoring equipment were 

carefully avoided.  

3.4.2.1. Installation of Liner and Drainage Infrastructure 

 Geotextile fabric was placed upon the bare soil, with a rubber liner on top. The 

geotextile provided a protective barrier between the liner and the bare soil, but did not 

affect water movement within the cell. For each bioretention cell, a cedar frame was 

assembled onsite and was fitted along the upper cell perimeter. The frame functioned to 

ensure that the length and width dimensions remained accurate and comparable between 

cells, while also providing a solid platform to which the rubber liner could be secured and 
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an outside barrier against flow from adjacent grassed areas, which were explicitly 

excluded in this research. Two notches were cut into the cedar frame. One was at the 

position of the overflow swale to allow any overflow water to enter the existing storm 

drain network. The other was at the entrance to the bioretention cell, where the inflow 

monitoring equipment would ultimate be attached.  

 A hole just smaller in diameter than the four-inch outlet pipe, was cut in the liner 

and geotextile near the bottom of the cell. The material was stretched over the four-inch 

pipe that protruded into the bioretention cell. A rubber coupling was used to seal the 

rubber liner to the monitoring pipe. The perforated underdrain drainage configuration was 

pre-assembled above ground and consisted of two vertical PVC cleanout pipes, which 

were connected via elbow pipes to a horizontal four-inch perforated PVC drainage pipe 

with pre-drilled 3/8-inch diameter holes. The cleanout pipes were tall enough to protrude 

from the finished top surface, and would allow maintenance on the perforated pipe area, 

should it ever become clogged. The U-shaped drainage structure was lowered into the 

cell at the downstream end of each bioretention cell. The perforated underdrain pipe was 

coupled to the four-inch pipe, which ultimately tied to the monitoring equipment. 

Although this drainage design did not specifically include an internal water storage (IWS) 

zone, the perforated underdrain was approximately two inches (5.08 cm) higher than the 

bottom of the cell, in order to connect it to the outflow monitoring equipment. 

3.4.2.2. Layering the Bioretention Soil Media  

 The designed depths of each layer of bioretention soil media were measured 

from the bottom of the cells and marked on the aforementioned vertical cleanout pipes. 
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Gravel (~1.5 inches in diameter), pea gravel (or pea stone, 1/8 inch – 3/8 inch diameter), 

sand, and a sand/compost mixture were added in subsequent layers, with care taken to 

avoid compaction (Figure 6). Approximately six inches of ponding depth was maintained 

above the final soil layer, between the top of the soil media and the overflow notch in the 

cedar frame. Mulch was not used in this bioretention design to avoid potential release of 

labile N and P.  

3.4.3. Grading from the Curb Cut to the Inflow Sampling Area 

 Once the cells were installed, the grading was completed from the trapezoidal 

curb cut to the cell opening and from the overflow notch to the storm drain. Geotextile 

fabric and rubber liner were laid down from the curb cut to the notch in the cedar to 

create an impermeable pathway to the monitoring equipment. Two to four-inch stone was 

laid upon the impermeable layer within the conveyance strip to hold the fabrics in place. 

Berms were constructed from the curb cut to the eight-inch opening in the cedar frame on 

either side of the entrance swale, where the inflow water would ultimately enter the 

monitoring equipment. This ensured that no stormwater was lost on its way to the inflow 

weir box.  

3.4.4. Installation of Inflow Monitoring Equipment and Vegetation 

 Construction of the eight bioretention cells was complete in November of 2012. 

The total snow accumulation during the winter of 2012-2013 was approximately 86.5 

inches (NOAA, Precipitation Frequency Data Server). The media experienced some 

compaction due to the weight of the snow; however, the high hydraulic conductivity of 

the sand media prevented any significant reduction in drainage capacity. In soil media 



www.manaraa.com

 

 

 

71 

 

designs with more silt and clay, compaction can damage macropores, reducing hydraulic 

conductivity (Thompson et al. 2008) and should be carefully avoided. Freeze and thaw 

cycles did not shift the media inside the cells themselves due to the high sand content, but 

did alter the surrounding soil media, which needed to be re-graded in some places the 

following spring.  

 In May of 2013, the inflow weir boxes were placed inside the bioretention cells 

and screwed to the interior of each cedar frame, such that the top of the weir boxes were 

level with the bottom of the frame entrance notches. The rubber liner, which ran from the 

curb cut across the conveyance strip, was extended to cover the area where the weir box 

and cedar frame met, with a waterproof rubber patch. At the beginning of each sampling 

season, weir boxes were leveled and silicone was reapplied to ensure water tightness and 

accuracy of flow measurements. The narrow perforated distribution channel was placed 

inside the cell, in a shallow trench, starting at the edge of the weir box (Figure 3), such 

that the top most part of the channel was level with the soil media.  

 Vegetation was planted in May of 2013 and watered for three weeks during the 

initial establishment phase. Plant selection was based on height, rooting habit, bloom 

time, color, diversity, pollen supply, robustness to drought and flood conditions, and salt 

tolerance.  Water quality monitoring began in June of 2013. Information regarding the 

comparative water quality performance of the soil media and plants used in this research 

can be found in Chapter 5.  
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3.5. Conclusions 

 Monitoring can provide critical information regarding the effectiveness of 

bioretention systems, how key design features influence the pollutant removal 

mechanisms, and how those features are likely to change over time. The inflow and 

outflow bioretention monitoring infrastructure in this research was specifically designed 

to allow for a detailed characterization of mass based bioretention pollutant removal 

performance, and can be adapted to achieve various stormwater sampling goals. The 

time-based sampling method proved to be effective at capturing the inflow and outflow 

hydrographs from this research site. The equipment allowed for the conversion of 

concentration to mass for any sample, and comparison of the inflow and outflow mass 

loads. The care taken during construction resulted in the proper installation of the 

monitoring equipment and overall functionality of the cells. 
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CHAPTER 4: INVESTIGATING POLLUTANT MASS MOBILIZATION 

AND SPECIATION DURING THE STORMWATER FIRST FLUSH 
 

Amanda L. Cording 

Keywords: stormwater, mass based first flush, pollutant load, nitrogen, phosphorus, 

nutrients, TSS, precipitation intensity, flow rate.  

 

Abstract 

 

 The mobilization of sediments and nutrient constituents in stormwater from the 

paved road surface was investigated over the course of 19 storm events to critically 

evaluate the occurrence of the mass-based first flush and factors that influence total 

pollutant loads. Mass loads were found to be highly positively correlated with storm 

intensity and total precipitation volume, with N and P constituent species having distinct 

mobilization patterns. The total cumulative mass load in stormwater was found to be 

highest for total suspended solids, followed by total Kjeldahl nitrogen, nitrate, non-labile 

phosphorus and soluble reactive phosphorus. Mass loads per m
2
 of paved road are 

predicted with linear regression as a function of precipitation depth. The results from this 

site clearly dispute the commonly held assumption that 90% of the pollution will be 

mobilized by 0.5 inches of precipitation, within a 0.9-inch storm event. The dominance of 

non-labile pollutant constituents in stormwater is encouraging, for this pollutant fraction 

is known to be effectively removed by green stormwater infrastructure techniques, such 

as bioretention.  

 

 

4.1. Achieving Water Quality Targets by Treating the First Flush 

 The first half-inch of runoff has been thought to transport 90% of the total 

pollution over the course of an event (Bach et al. 2010; Bertrand-Krajewski et al. 1998). 

This concept is generally referred to as the “first flush” (Bertrand-Krajewski et al. 1998; 

Sansalone and Cristina 2004; Stenstrom and Kayhanian 2005). Although there are many 

variations on the definition, the first flush (FF) concept has been heavily utilized by  
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stormwater practitioners, who have to recommend/require a water quality volume (WQv), 

or portion of the storm event (e.g., 0.5 inches), to treat with stormwater best management 

practices. Minimum WQv requirements typically range between 0.5 and 1.0 inch of 

rainfall (DeBusk and Wynn 2011; Sansalone and Cristina 2004; Stenstrom and 

Kayhanian 2005; Vermont Agency of Natural Resources 2002a). However, the actual 

pollutant mass loads from a 0.5-inch or 1.0-inch storm event are not well predicted, and 

results from FF investigations have been highly variable, with changing definitions 

making it difficult to compare results between studies (Alias et al. 2014; Bach et al. 2010; 

Gupta and Saul 1996; Hathaway et al. 2012).  

 According to Sansalone and Cristina (2004), the FF concept should be broken 

into a concentration-based first flush (CFF) and a mass-based first flush (MFF). The CFF 

is broadly defined by an initially high concentration in the early portion of the storm 

event with a subsequent rapid decline. The MFF is defined as a disproportionately high 

mass delivery in relation to total flow volume (Sansalone and Cristina 2004).  The 

distinction between concentration and mass measurements is particularly important, for 

they have different policy implications (Sansalone and Cristina 2004). The stormwater 

discharge from a site may be regulated by either a discharge permit, or a total maximum 

daily load (TMDL) limit. Discharge permits are based on limiting the runoff 

concentration from a site (Sansalone and Cristina 2004), whereas a TMDL limits the total 

mass from a site (U.S. Environmental Protection Agency 1998).  A TMDL is a pollution 

budget for waters that have been deemed impaired under the Clean Water Act (U.S. 

Environmental Protection Agency 2008).  
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 The CFF has been found for various pollutant constituents, and is largely due to 

the dilution effects of increasing stormwater volume during the rising limb of the storm 

hydrograph (Deletic 1998; Lee et al. 2002; Maestre and Pitt 2004; Miguntanna et al. 

2013). Dilution may be helpful in some contexts, but it does not alter the total pollutant 

mass delivered to a receiving water (Smith et al. 1999). The MFF concept has not been 

widely validated across different storm conditions, and may not be equally exhibited by 

all pollutant types (e.g., labile and non-labile) (Hathaway et al. 2012).   

 The factors that influence the mobilization and transport of sediment and 

nutrient mass in various forms of chemical speciation (e.g., non-labile P vs. labile P) are 

not well characterized (Sansalone and Cristina 2004). Further, predicting the pollutant 

mass loads associated with a range of storm events will help us better understand how 

those loads are related to the responses of aquatic environments (e.g., eutrophication) 

(Charbeneau and Barrett 1998; Kang et al. 2008) and can be used to evaluate BMP 

performance on a mass basis. Both concentration and mass values are valid in certain 

settings, and both are susceptible to the factors that contribute to the variability of build-

up and wash-off process, which will be discussed below.  

 

4.2. Factors Contributing to First Flush Variability 

 According to the build-up/wash-off model, available pollutant load is thought to 

follow a dynamic equilibrium, where pollutant mass accumulates upon an impervious 

surface prior to a storm event, and a portion of it is mobilized during a precipitation event 

(Francey 2010; Herngren 2005; Vaze and Chiew 2003a).  
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4.2.1. Build-Up  

 Some factors that influence the build-up of pollutant mass include land-cover, 

land-use, traffic, the number of days since the last rain event, also known as the 

antecedent dry period, or antecedent dry days (ADD) (Alias et al. 2014; Kayhanian et al. 

2007; Lee et al. 2002); and the amount of rainfall that fell during the most recent event, 

or antecedent precipitation conditions (APC) (Blecken et al. 2009; Brown et al. 2013; 

Deletic 1998). Air temperature also plays a role in localized decomposition and 

mineralization rates (Dillon and Chanton 2005), which may increase pollutant 

availability. Although antecedent conditions are likely to influence the available pollutant 

load, in stormwater models often hold this value constant (Vaze and Chiew 2003b). 

4.2.2. Wash-Off 

 Each precipitation event is thought to have a specific capacity to mobilize and 

transport pollutants (Charbeneau and Barrett 1998; Egodawatta et al. 2007; Vaze and 

Chiew 2003a). Pollutant mobilization dynamics are still under investigation, and it is 

unclear how pollutants in various stages of decomposition (e.g., labile and non-labile 

pollutants) are likely to differ in their mobilization and transport patterns. Some of the 

factors that influence pollutant mobilization and transport from an impervious surface 

include the detachment of surface pollutants by the kinetic energy supplied by a falling 

raindrop, the rainfall intensity, and the resulting shear stress supplied by runoff 

(Egodawatta et al. 2007; Vaze and Chiew 2003a). 

 Stormwater velocity influences the dissolved and particulate fractions of 

pollution in a given sample, with increasing velocities transporting increased particle 
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sizes based on Stokes Law (Glysson et al. 2000). Runoff velocity is variable throughout a 

storm, however, and its relative influence on the total mass load of different pollutant 

types has not been well characterized. Overall, the total pollutant mass load from 

stormwater runoff has not been easily predicted, and the relative strength of influencing 

factors on different pollutant types is not well known (Brezonik and Stadelmann 2002; 

Charbeneau and Barrett 1998; LeBoutillier et al. 2000). 

4.2.3. Pollutant Speciation 

 Pollutant wash-off is typically modeled with an exponential equation, in which 

assumptions include that nutrients (N and P) are grouped together and modeled as one 

would model a particle (Charbeneau and Barrett 1998; Egodawatta et al. 2007; Kang et 

al. 2006; Miguntanna et al. 2013). Yet the local aquatic environment may respond very 

differently to influxes of nitrogen and phosphorus (Havens et al. 2003; Turner and 

Rabalais 2013).  Further, grouped measures such as total phosphorus (TP) and total 

nitrogen (TN) are often used in stormwater analysis, but these measures contain both 

labile and non-labile constituents, which are likely to have different short-term and long-

term impacts on receiving waters, with labile constituents being more immediately 

available to phytoplankton (Paerl 2006). The two constituent forms may also have 

different removal mechanisms in GSI (Henderson et al. 2007; Lefevre et al. 2015). 

 By understanding the dominant mechanisms governing the build-up and wash-

off of stormwater pollutants in various forms of speciation, researchers and practitioners 

will be better able to predict pollutant loads and improve pollutant removal designs, 

models, and regulations  (Charbeneau and Barrett 1998; Vaze and Chiew 2003a). 
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4.3. Research Objectives 

 The broad goals of this research are to better understand the factors controlling 

build-up and wash-off of stormwater pollutants from small paved road watersheds, and to 

predict the mass load of various constituents, as a function of precipitation depth. 

Specifically, this research addresses the following research questions: 

1) What is the composition and total mass load of stormwater runoff from a 

 low to medium traffic, paved road surface? 

2) Is there consistent evidence for a mass based first flush (MFF)? Is it equally 

 displayed by all constituents?  

3) What portion of pollutant mass is mobilized by various precipitation depths?  

4) How do hydrologic and environmental factors differ in their relative 

 contribution to nutrient and sediment mass delivered during a storm event?  

 

4.4. Site Description 

 In 2012, the University of Vermont Bioretention Laboratory was constructed on 

the University of Vermont (UVM) campus, in Burlington, VT. The research site consists 

of eight small paved road sub-watersheds with areas ranging from 320 ft
2
 (29.729 m

2
) to 

1,293 ft
2
 (120.12 m

2
). The road is one of the main thoroughfares for bus and vehicular 

traffic entering and exiting the UVM campus. Sub-watershed boundaries were delineated 

from the crown of the road to a granite curb at a 45-degree angle, leading into a 

trapezoidal curb cut. Stormwater is directed from the road surface, through the cub-cut, 
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and across a narrow conveyance strip, ranging from 3.72 m
2
 to 19.20 m

2
, which was lined 

with a rubber EPDM membrane and covered with 2 to 4 inch stone.  

 

4.5. Materials and Methods 

4.5.1. Stormwater Monitoring Infrastructure and Equipment 

 Runoff was captured in a monitoring device, called a “weir box” prior to 

entering a bioretention cell (see Chapter 3).  Each weir box was sized to allow stormwater 

to be sampled in rapid, sequential segments, and is equipped with a 90-degree v-notch 

weir, which was selected for optimal measurement of small changes in volume (U.S. 

Bureau of Reclamation 2001). This maximized the detection of incremental changes in 

runoff quality throughout an event. The dimensions of the weir boxes were based on U.S. 

Bureau of Reclamation (2001) recommendations, and are described in detail in Chapter 3. 

 The height or level of the stormwater in each weir box was measured with a 

Teledyne™ 720 differential pressure transducer, which took continuous measurements 

throughout each storm event, in one-minute intervals. The pressure transducers were 

clipped to the base of the weir box to ensure accurate measurements in high flow events 

and are equipped with a venting system that compensates for changes in atmospheric 

pressure. It records level from 0.03 ft (0.9144 cm) to 5.0 ft (1.524 m) (+/- 0.243 cm), with 

an operating temperature of 32 to 120
o
 F. Automated sample collection was conducted by 

Teledyne™ ISCO 6700 series automated samplers, which can hold a maximum of 

twenty-four 1-L bottles.  
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4.5.2. Sampling Considerations 

 The size of the research drainage area and sampling regime have been shown to 

influence the detectability of a FF event (Maestre and Pitt 2004), and were carefully 

considered in this research. The watershed area influences the time of concentration (Tc) 

or the time for the runoff to travel from the most hydrologically remote part of the 

watershed to the monitoring location (Kang et al. 2008). As pollutant transport time 

increases, so does the likelihood of mixing, dilution, and the introduction of complicating 

factors such as changes in land surface composition, friction forces, and abrupt changes 

in flow direction, which may affect pollutant composition within a storm (Kang et al. 

2006). Therefore, smaller watershed sizes (< 10 m
2
) have been previously shown to more 

reliably represent first flush characteristics (Kang et al. 2006; Lee and Bang 2000; 

Maestre and Pitt 2004). Sansalone and Cristina (2004) recommend that if the goal is to 

detect a CFF, the sampling design should target the early portion of the event, whereas if 

mass characterization is the target, measurements should be based on the hydrograph 

shape, with more samples leading to greater accuracy. 

4.5.3. Water Quality Sampling 

 The eight small paved road sub-watersheds in this study provided an ideal 

setting in which to investigate the first flush. The runoff sampling design was based on 

the length of time required to take successive samples throughout an idealized 

hydrograph. The time of concentration, rainfall intensity duration curves, and the rational 

method were used to estimate peak flow rates for each sub-watershed. Details regarding 

the sampling methods can be found in Chapter 3. Teledyne ISCO 6700 series automated 
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sampling equipment took 900-ml runoff samples every two minutes for 48 minutes (n = 

24) when inflow flow rates were consistently above a minimum water level threshold of 

0.21 ft (6.50 cm) from the bottom of the weir box. Rapid sequential flow rate 

measurements were taken every minute, as suggested by Vaze and Chiew (2003a), and 

allowed for the conversion of concentration to mass load for any given sample. 

Stormwater levels were converted to flow rates using discharge equations developed for 

each of the eight weirs. 

4.5.4. Water Quality Analysis 

 Each sample was analyzed for total phosphorus (TP), soluble reactive 

phosphorus (SRP), total nitrogen (TN), nitrate (NO3
-
), and total suspended solids (TSS). 

All stormwater samples were filtered with a Fisherbrand 0.45 μm nylon syringe filter 

prior to analyzing for dissolved inorganic nutrients according to standard methods 

(APHA 1992) and read by a Lachat™ automated colorimeter (Flow Injection Analysis, 

QuikChem 8000, Hach Company, Loveland, CO). Total phosphorus (TP) and total 

nitrogen (TN) concentrations were determined using potassium persulfate digestions on 

unfiltered samples. Potassium persulfate was prepared fresh for each digestion (APHA, 

1995). Quality control samples for both TN and TP were prepared using para-

Nitrophenylphosphate (para-NPP). A blank, standard and QC were included each time 

samples were run. SRP (dissolved ortho-phosphate) and TP (persulfate digested o-PO4
3

 
–
 

were analyzed using the Lachat QuickChem Method 10-115-01-1-Q. NO3
-
 and TN

 
were 

analyzed using the Lachat QuickChem Method 10-107-04-1-B.  TSS was measured 

according to standard methods (APHA 2011). 
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 In order to investigate nutrient speciation in stormwater, TN and TP were 

mathematically separated into the approximate equivalent of total Kjeldahl nitrogen 

(TKN) and non-labile phosphorus (NLP), respectively. NLP was determined by 

subtracting the SRP from TP for each sample, and includes both the particulate and 

dissolved fraction of organic P. Dissolved organic phosphorus is predominantly non-

labile, requiring bacterial decomposition (mineralization) to become ortho-phosphate 

(SRP), which is labile (Spivakov et al. 1999).  TN is defined as the sum of organic 

nitrogen, nitrate, nitrite, ammonia and ammonium. TKN is traditionally defined as the 

portion of nitrogen measured using the Kjeldahl method. It is a grouped measure, which 

includes NH3, NH4
+
 (labile, sometimes referred to as “free ammonia” or “ammonia”), 

and organic nitrogen (both labile and non-labile). The Kjeldahl method requires the use 

of toxic chemicals and poses hazardous disposal issues (Patton and Kryskalla 2003), 

therefore this research used an alternative method used by the Hach Company® for 

determining the equivalent portion of nitrogen to TKN in a sample, by using a persulfate 

digestion to determine total nitrogen, then subtracting the nitrate and nitrite components 

to determine TKN (Antonio and Walker 2011). 

4.5.5. Data Analysis 

 A total of 463 samples were taken over the course of 19 storm events dispersed 

over two sampling seasons (July to November 2013 and June to October 2014). In order 

to compare the different nutrient constituents within a sample (e.g., TKN and NO3
-
), 

samples that did not have enough water to measure both TP and TN were discarded. On 

some occasions, more than one of the eight watersheds was sampled during the same 
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event. This was not possible during every event due to a lack of equipment. Each storm 

event that was sampled at one of the eight watershed locations is called a ‘watershed 

event’. Nutrient data were collected from all watershed events (n = 35). Total suspended 

solids were collected from all events except one (n = 34). The number of samples taken 

during each event varied, depending on the characteristics of the storm. The sample 

number for each watershed event is listed in Table 32, in the Appendix. 

4.5.6. Calculating Pollutant Mass Load and Concentration 

 The pollutant load was defined as the amount of mass (typically μg or mg) 

transported by a given volume of stormwater, in a given amount of time (U.S. 

Environmental Protection Agency 1997). Numeric integration was used to estimate the 

area under the flow rate and concentration functions, which provide volume and mass 

values, respectively. Equation 10 shows how numeric integration can be employed in a 

generalized function.  

 

            [
           

 
] (10) 

 

The accuracy of this method increases with an increased number of samples in any given 

length of time (Stenstrom and Kayhanian 2005); therefore, numerous discrete samples 

were taken in short time increments throughout the hydrograph in a method similar to 

Alias et al. (2014). The total mass load was determined using Equation 11. Precipitation 
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depth was determined by dividing the cumulative stormwater volume by the individual 

contributing drainage area, which included the area of the lined conveyance strips.  

           ∫            
  

  

   
(11) 

Where, 

C (t) is the concentration as a function of time (mg L
-1

) 

Q (t) is the flow rate as a function of time (L s
-1

) 

 

4.5.7. Partial Event Mean Concentration 

 The Event Mean Concentration (EMC) is often used to represent the average 

stormwater concentration over the course of an event, and is defined as the total 

cumulative pollutant mass divided by the total cumulative volume (Stenstrom and 

Kayhanian 2005). Volume and mass measurements used in the EMC are typically 

determined using flow-weighted composite sampling of an entire storm event. Composite 

sampling provides an adequate average representation of concentration, but does not 

provide any temporal information regarding the overall distribution of mass over the 

course of an event (Stenstrom and Kayhanian 2005).  

 In the partial event mean concentration (PEMC), the average concentration can 

be calculated for any sampled portion of the hydrograph (Lee et al. 2002; Stenstrom and 

Kayhanian 2005), as shown in Equation 12.  The limits of the numerical integration run 

from the initiation of runoff (t0) to the time at which sampling stops (tn). When the entire 

event is sampled, the PEMC and EMC are equal.  
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      ∫

          

      

  

  

  
∑     
  
  

∑     
  
  

 (12) 

Where,  

t0 is the time at which the sample is collected in a storm event  

tn is the time the sampling has stopped  

c is the sample concentration as a function of time (mg L
-1

) 

q is the flow rate as a function of time (L
 
s

-1
) 

m is the pollutant mass delivered during a specific portion of the storm event (μg or mg) 

v is the volume delivered during a specific portion of the storm event (L) 

 

4.5.8. Mass Based First Flush  

 The M:V ratio is often used to portray the relative distribution of pollutant mass 

within a storm event, as a function of total measured runoff volume (Bach et al. 2010; 

Hathaway et al. 2012; Maestre and Pitt 2004). Any value over 1.0 represents a higher 

delivery of mass per volume of stormwater, and is considered a mass-based first flush 

effect (Sansalone and Cristina 2004). The M:V ratio is calculated by dividing the ratio of 

cumulative sample mass at time t, to the total cumulative mass (m), by the ratio of sample 

cumulative volume at time t, to total cumulative volume (v), as shown in Equation 13. 

The maximum cumulative mass load of each pollutant constituent and maximum volume 

measured from the site were used in order to compare the MFF effect between different 

storm events. The maximum mass delivered (M) for each constituent is listed in Table 9. 

The maximum volume measured (V) was generated from a 0.928 inch precipitation 

event.  
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∑∫           
  

 
 

∑∫       
  

 

 

 (13) 

Where,  

M:V is the mass mobilized per unit of volume 

C (t) is the concentration as a function of time (mg L
-1

) 

Q (t) is the flow rate as a function of time (L s
-1

) 

m is the maximum mass delivered (constant) (μg or mg) 

v is the maximum measured (constant) runoff volume 

 

4.5.9. Investigating the Role of Flow Rate on Mass Mobilization 

 In order to evaluate the strength of precipitation intensity on the mobilization of 

mass, the M:Q ratio was developed. The M:Q ratio is mathematically similar to the M:V 

ratio, and depicts the amount of mass mobilized by different flow rates. The relative 

strength of flow rate is measured by the ratio of sample flow rate at time t to the 

maximum event peak flow rate measured, as shown in Equation 14. The highest sampled 

flow rate was 2.55 L/s (0.090 cfs).  

      

∑∫           
  

 
 
    
 

 (14) 

Where,  

M:Q is the mass mobilized per unit of total flow rate  

C (t) is the concentration as a function of time (mg L
-1

) 

Q (t) is the flow rate as a function of time (L s
-1

) 

m is the maximum mass delivered (constant) (μg or mg) 

q (t) is the flow rate at time t  (L
 
s

-1
) 

q is the peak flow rate measured (constant) (2.55 L
 
s

-1
) 
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4.5.10. Statistical Analysis 

 All statistical analysis was conducted with JMP Pro 11.2. Normality of 

distributions was evaluated using the Kolmogorov-Smirnov test. Where normality could 

not be met, non-parametric methods were used. A non-parametric version of the paired t-

test (Wilcoxon signed rank) was used to compare differences between paired repeated 

measures data. Spearman’s rho is a non-parametric correlation method, and was used to 

evaluate multivariate correlations due to its strength with data that may have a non-linear 

characteristic, does not require normality, and is robust against the presence of outliers 

(Dytham 2003). Linear regression coefficents were used to estimate the magintude of 

change in cumualtive mass load deliverd and percent mass removed from the road 

surface, as a function of increasing precipitation. The probability level of p ≤ 0.05 was 

accepted as significant in all tests. 

 

4.6. Results and Discussion 

4.6.1. Antecedent Environmental and Hydrologic Characteristics  

 Nineteen storm events were monitored across the eight sub-watersheds, for a 

total of 35 watershed events. The total sampled stormwater volume ranged from 13 L to 

898 L, which corresponded to between 0.004 inches (0.01 cm) and 0.928 inches (2.36 

cm) of precipitation in the corresponding watersheds from which those samples were 

taken. The event peak flow rate ranged from 0.014 Ls
-1

 to 2.55 L s
-1

, excluding overflow 

events.  The antecedent dry days (ADD) prior to an event ranged from 0 to 11. The 

antecedent precipitation condition (APC) in the prior event, ranged from 0.01 inches 
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(0.03 cm) to 1.61 inches (4.09 cm). The maximum daily air temperature ranged from 59 

o
F (15 

o
C) to 89 

o
F

 
(31.7 

o
C). The antecedent conditions for each watershed event are 

provided in Table 31 in the Appendix.  

4.6.2. Mobilization of Mass by Volume 

 Results indicate that some storm events exhibited a MFF effect for one or more 

constituents, as shown in Figure 11, however, the average M:V ratio (n = 35, n = 34 for 

TSS) was less than 1.0 for all N and P constituents and TSS (Table 3).  

 
Figure 11. Average M:V ratio per watershed event. Values greater than 1.0 display a first flush. 

 

Table 3. Summary statistics for the M:V ratios 

Constituent Measurement Mean 

Std 

Dev 

Std 

Error 

Upper 

95% 

Mean 

Lower 

95% 

Mean 

Number 

of 

Watershed 

Events 

Sampled 

NLP M:V 0.80 0.71 0.12 1.05 0.56 35 

SRP M:V 0.90 1.01 0.17 1.24 0.55 35 

TKN M:V 0.93 0.68 0.12 1.16 0.70 35 

NO3
- 

M:V 0.95 0.75 0.13 0.69 0.69 35 

TSS M:V 0.74 0.76 0.13 1.00 0.47 34 
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 There were no significant differences in the MFF found between constituents. 

Flow rate, APC, and maximum daily air temperature may have influenced the MFF of 

some constituents. For instance, spearman’s rho results indicate that the peak flow rate 

per watershed event (n = 34) was found to positively correlate with the MFF for TSS (rs = 

0.57, p = 0.0005). The APC was found to negatively correlate with the MFF for SRP (rs = 

-0.35, p = 0.0381) and NO3
-
 (rs = -0.40, p = 0.0175). The rainfall from a previous event 

would have removed some of the SRP and NO3
-
, resulting in a lower available mass at 

the start of the subsequent event, which weakens the MFF effect (Kang et al. 2006). The 

maximum daily temperature was found to positively correlate with the MFF for NLP (rs = 

0.37, p = 0.0276), TKN (rs = 0.48, p = 0.0034) and TSS (rs = 0.52, p = 0.0018). 

Temperature may have resulted in higher decomposition rates and resulting mass values, 

which would have strengthened the MFF effect.  

 Hathaway et al. (2012) also found M:V ratios less than 1.0 from storm sewer 

outflows with rainfall depths between of 0.79 inches and 0.90 inches. The authors found 

the overall strength of the MFF, although less than 1.0, to be significantly higher for TSS 

than for NO3
-
, and that nitrogen generally displayed a stronger MFF characteristics than 

phosphorus, with SRP exhibiting the weakest MFF effect (Hathaway et al. 2012). In this 

research, nitrogen also tended to display a higher MFF effect, but was not significantly 

higher than P constituents.  

4.6.3. Mobilization of Mass by Flow Rate  

 The overall influence of flow rate on the mobilization of mass, as measured with 

the M:Q ratio was found to be variable, but greater than 1.0 for all constituents (Table 4).  
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Table 4. Summary statistics for the M:Q ratios 

Constituent Measurement Mean 

Std 

Dev 

Std 

Error 

Upper 

95% 

Mean 

Lower 

95% 

Mean 

Number 

of 

Watershed 

Events 

Sampled 

NLP M:Q 4.87 11.93 2.02 8.97 0.77 35 

SRP M:Q 5.80 11.00 1.86 9.57 2.02 35 

TKN M:Q 5.82 12.09 2.04 9.97 1.66 35 

NO3
- 

M:Q 4.82 5.56 0.94 6.73 2.92 35 

TSS M:Q 4.84 12.83 2.20 9.32 0.37 34 

 

There were no statistically significant differences in the M:Q ratios found between the 

various pollutant constituents. The average M:V and M:Q ratios from each of the 35 

watershed events were compared using Wilcoxon Signed Rank. Results indicate that flow 

rate had a larger influence than volume on the mobilization of both labile and non-labile 

pollutant mass (Table 5). 

Table 5. Wilcoxon signed rank comparison of the average M:V and M:Q ratios for each watershed 

event (n = 35). 

Variable By Variable S p > |S| 

TP M:Q TP M:V 217.5 <0.0001 

NLP M:Q NLP M:V 202.5 0.0002 

SRP M:Q SRP M:V 232.5 <0.0001 

TN M:Q TN M:V 209.5 <0.0001 

TKN M:Q TKN M:V 204.5 0.0001 

NO3 M:Q NO3 M:V 205.5 0.0001 

TSS M:Q TSS M:V 179.5 0.0012 

 

These results agreed with the findings of Egodawatta et al. (2007) and Alias et al. (2014), 

and have important implications with regard to climate change and stormwater policy. 

Projected increases in precipitation intensity (Frumhoff et al. 2007; Guilbert et al. 2015) 
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could result in higher pollutant loads from impervious surfaces. Both precipitation 

volume and intensity are important considerations in the mobilization of mass and 

ultimately the selection of a WQv to be treated by stormwater control measures. These 

factors will be discussed below.  

4.6.4. Pollutant Mobilization Factors and Speciation  

 The total cumulative pollutant mass from an event (n = 35) was found to be 

highly correlated with both precipitation depth and the event peak flow rate for all 

constituents (Table 6).  

Table 6. Spearman’s rho non-parametric correlations between cumulative mass, cumulative volume, 

and flow rate, with n = 35 for all constituents, except TSS where n = 34. 

Variable By Variable Spearman ρ Prob > |ρ| 

TP Precipitation 0.86 <0.0001 

TP Flow Rate 0.83 <0.0001 

NLP Precipitation 0.79 <0.0001 

NLP Flow Rate 0.84 <0.0001 

SRP Precipitation 0.79 <0.0001 

SRP Flow Rate 0.71 <0.0001 

TN Precipitation 0.89 <0.0001 

TN Flow Rate 0.76 <0.0001 

TKN Precipitation 0.87 <0.0001 

TKN Flow Rate 0.80 <0.0001 

NO3 Precipitation 0.84 <0.0001 

NO3 Flow Rate 0.57 <0.0001 

TSS Precipitation 0.81 <0.0001 

TSS Flow Rate 0.86 <0.0001 

  

Slightly higher correlations were found between flow rate and non-labile pollutant 

fractions (i.e., NLP and TSS), as compared to labile constituents (i.e., SRP and NO3
-
), 

which were more highly correlated with volume. Non-labile constituents have larger 

mass, therefore a greater force would be necessary for transport, whereas labile 

constituents are highly soluble, thereby more easily transported by volume, regardless of 
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the rate of flow. Cumulative TKN mass was found to be more highly correlated with 

volume than flow rate overall, which may reflect its labile components (e.g., NH4
+
), 

however in other instances, it displayed more particulate characteristics. TKN is a 

grouped measure, which contains both labile and non-labile components, and is thus 

inherently more complex. 

4.6.5. Antecedent Conditions  

 When the entire event was considered (n = 35), Spearman’s rho results indicate 

that neither the antecedent conditions (i.e., ADD, APC), nor the maximum daily air 

temperature played a significant role in the pollutant mass load delivered.  This is similar 

to the findings of others (Alias et al. 2014; Egodawatta et al. 2007). However, if one 

considers only the initial part of each storm (the first 0.1 inches of rainfall), the influences 

of antecedent and environmental factors were more prevalent than if one examines the 

same factors throughout the entire storm. For instance, when the individual samples from 

the first 0.1 inches of precipitation across the 35 events were isolated (n = 228, n = 207 

for TSS), the number of antecedent dry days were found to weakly positively correlate 

with increasing mass load for NLP (rs = 0.24, p = 0.0002), TKN (rs = 0.28, p<0.0001), 

NO3
-
 (rs = 0.21, p = 0.0014), and TSS (rs = 0.22, p = 0.0016). Interestingly, the ADD did 

not correlate with SRP. This may indicate that the build-up of SRP on the road surface 

may not be as strongly influenced by temporal processes. The APC weakly positively 

correlated with NLP (rs = 0.35, p <0.0001), TKN (rs = 0.22, p = 0.0011), and weakly 

negatively correlated with NO3
-
 (rs = -0.18, p = 0.0065). There were no correlations 

between APC and SRP or TSS.  
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 The positive correlations between APC and NLP/TKN are particularly 

interesting, in that they may indicate that in the beginning of a storm event, the wash-off 

factor from the previous event is less dominant than the build-up factor between events 

for those constituents. The build-up factor in this case is moisture, which is known to be 

enhance decomposition and mineralization (Brady and Weil 2008; Davis and Cornwell 

1998; Van Meeteren et al. 2007). Conversely, the negative correlation between NO3
-
 

mass and APC in beginning of a storm may be related to the easily transportable nature of 

the monovalent anion during previous events (Sollins, Homann, and B. Caldwell 1996). 

 Maximum daily air temperature was found to weakly positively correlate with 

increasing SRP mass (rs = 0.15, p = 0.0226), TKN (rs = 0.20, p = 0.0020), and moderately 

correlated with TSS (rs = 0.28, p<0.0001) and NO3
-
 (rs = 0.39, p<0.0001) mass. This may 

be indicative of decomposition and mineralization processes. There was no correlation 

between temperature and NLP. 

4.6.6. Total Mass Load of Stormwater Constituents  

 The total mass loads of N and P constituents (n = 35) are shown in Figure 12. 

Some of the factors that contributed to outliers in Figure 12 will be discussed in further 

sections. 
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Figure 12. Box plot of cumulative stormwater mass load delivered across all watershed event (n = 35) 

for each nutrient constituent. 

 

 Wilcoxon signed rank results (n = 35) indicate that the cumulative TKN mass 

load in stormwater runoff was significantly higher than nitrate (z = 226.50, p <0.0001), 

NLP (z = 291.5, p <0.0001), and SRP (z=297.5, p <0.0001). Nitrate mass was 

significantly higher than SRP (z = 297.50, p <0.0001) and NLP (z = 208.5, p <0.0001). 

Non-labile P mass was significantly higher than SRP mass (z = 145.5, p = 0.0106). 

Results from Spearman’s rho tests (n = 35) indicate that the mobilization of TSS mass 

highly correlated with NLP mass (rs = 0.9037, p<0.0001) and TKN (rs = 0.8671, 

p<0.0001), but only moderately correlated with SRP (rs = 0.6058, p = 0.0001) and NO3
-
 

(rs = 0.6128, p = 0.0001).  

 The strong correlation between TSS and TKN is interesting, in that it suggests 

that TKN may have been composed of a large portion of organic N, which is different 

than what has been found by others (Miguntanna et al. 2013). On average (n = 35) the 

cumulative TN mass was composed of 63% (± 19) TKN and 37% (± 20%) NO3
-
. Total 
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phosphorus was composed of 63% (± 24%) NLP and 38% (± 24%) SRP. The dominance 

of TKN and NLP in the relative composition of TN and TP, respectively, is generally in 

agreement with results found by others (Maestre and Pitt 2004; Miguntanna et al. 2013; 

Stenstrom and Kayhanian 2005; Taylor et al. 2005). These results have encouraging 

implications for the magnitude of pollutant removal that is possible with GSI, which has 

been found to be proficient at removing large particulate fractions of pollutants (Bratieres 

et al. 2008; Lucas and Greenway 2008). The dominance of NLP in stormwater runoff is 

important to consider, for it may result in a lag between the time a storm event discharges 

mass to a receiving water body and the time that the non-labile P is mineralized and 

becomes bioavailable. 

4.6.7. Predicting Total Mass Load as a Function of Precipitation  

 The load graph shown in Figure 13 displays the mobilization patterns of the 

stormwater constituents from the 35 watershed events, across a unified precipitation 

gradient, with TSS shown on the right vertical axis. All constituents were significantly 

associated with precipitation (p<0.0001), with linear regression coefficients and 

equations presented in Table 7. Conditions that influence the partitioning of labile and 

non-labile constituents in stormwater will be discussed in further sections.  
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Figure 13. Cumulative TKN, NO3

-
 , NLP, SRP and TSS mass per m

2
 of drainage area by 

precipitation depth (n = 463, n = 410 for TSS) shown with the best fit line for each constituent. 
 

 
Table 7. Linear regression parameters for the total cumulative mass load per m

2
 of paved surface 

with increasing precipitation in units of inches (n = 463, n = 410 for TSS). 

Parameter 
unit 

Linear Fit R
2
 

Regression 

Coefficient 

Standard 

Error 

T 

Ratio 

Prob > 

|t| 

TP μg m
-2 

106.75+1,565*X 0.42 1,565 86 18.29 <0.0001 

NLP μg m
-2 

75.03+994*X 0.21 994 89 11.21 <0.0001 

SRP μg m
-2 

30.76+589*X 0.35 589 37 15.72 <0.0001 

TN μg m
-2 

271.89+13,355*X 0.70 13,355 404 33.07 <0.0001 

TKN μg m
-2 

193.75+9,106*X 0.53 9,106 401 22.70 <0.0001 

NO3
-
 μg m

-2 
79.05+4,256*X 0.72 4,256 123 34.59 <0.0001 

TSS mg m
-2 

24.38+611*X 0.24 611 54 11.37 <0.0001 

 

4.6.8. Conditions That Contribute to High Mass Loads  

 The maximum cumulative mass of all constituents mobilized across the 

watershed events (n = 35) are listed in Table 8. Interestingly, the peak in mass loads for 

the various constituents (e.g., labile and non-labile) did not occur during the same event, 

and seem to be driven by different processes. In the following section, two storm events 

are described in detail to investigate factors that contributed to the delivery of high mass 

loads. 
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4.6.8.1. Case Studies: Maximum Cumulative Mass Conditions 

 The highest cumulative TKN, NLP, and TSS mass values were delivered by 

Watershed Event 15 (n = 20, TSS n = 18), shown in Figure 14.  

 
Figure 14. Watershed Event 15 (6/3/14, Cell 6): The M:V ratio (top), percent of total mass mobilized 

by the storm event (middle) and cumulative mass per m
2
 of drainage area (bottom) (n = 20, TSS n = 

18). This event delivered the highest cumulative TKN, NLP and TSS. 
 

Watershed Event 15 can be characterized as having a high volume and high peak flow 

rate (both greater than the upper 95% mean for all events), with a relatively long duration 

of approximately 4 hours. The total precipitation depth measured during this event was 

0.49 inches (1.2 cm), with a peak flow rate of 1.28 L s
-1

, which was higher than the upper 

95% mean of peak flow rates measured. The ADD was three days and the APC was 0.40 

inches (1.0 cm) of rainfall. The peak daily temperature was 89 
o
F (32 

o
C). In this event, 

the high flow rate, combined with a high volume, likely maintained the momentum 

needed to transport TSS and NLP. The fact that TKN also had a peak mass load during 

this event, points to the non-labile characteristics of the grouped measure, which were 

dominant in this case. 



www.manaraa.com

 

 

 

101 

 

 The highest cumulative SRP and NO3
-
 mass values were delivered by Watershed 

Event 35 (n = 22), shown in Figure 15. TSS was not measured during this storm event.  

 
Figure 15. Watershed Event 35 (10/4/14, Cell 7): The M:V ratio (top), percent of total mass mobilized 

by the storm event (middle) and cumulative mass per m
2
 of drainage area (bottom) (n = 22). This 

event delivered the highest cumulative SRP and NO3
-
 mass loads. 

  

Watershed Event 35 can be characterized as having a high volume and medium peak flow 

rate, with a two-part duration. The first precipitation duration lasted 28 minutes and 

delivered 0.58 inches (1.5 cm). There was a 52 minutes break, before the second 

precipitation duration, which lasted 13 minutes and delivered 0.25 inches (0.64 cm). The 

peak flow rate during this event was 0.4476 L s
-1

, which was just above the lower 95% 

mean for peak flow rates measured. The ADD was the highest measured, at 11 days, with 

a low APC of 0.02 inches (0.05 cm). The maximum temperature on this day was 59 
o
F 

(15 
o
C).  The cumulative SRP and NO3

-
 mass loads may have been influenced by the 

wetting and rewetting sequence of the storm event, which has been shown to increase the 

availability of labile constituents (Peñuelas et al. 2013). It may have also been influenced 

by seasonal effects (Lee et al. 2004). For instance, Watershed Event 35 took place in 
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October, when there is an abundance of organic material available in areas adjacent to the 

road, which may be easily transported via wind onto the road surface. Brown et al. (2013) 

also found elevated concentrations of labile and non-labile P and N in runoff as a result of 

seasonal pollen and leaf litter deposition.  

4.6.9. Comparing Pollutant Mass Build-Up Values from the Literature 

 There is inherent spatial and temporal variability in build-up conditions, which 

are influenced by land use; however, mass loads from different land use types, on a small 

per area basis, are needed as reference points to help predict the total mass loads from a 

larger drainage area. The cumulative mass build-up on a paved road found in this study 

were generally higher but comparable to results found by Brezonik and Stadelmann 

(2002), and lower than results found by Miguntanna et al. (2013) (Tables 8-9).  

Table 8. Comparative literature review of initially available (build-up) mass loads per m
2
 of drainage 

area for nutrient and sediment constituents from stormwater runoff.  

Author 

TP NLP SRP TN TKN NO3 TSS 

μg m
-2

 μg m
-2

 μg m
-2

 μg m
-2

 μg m
-2

 μg m
-2

 mg m
-2

 

Brezonik and Stadelmann (2002), 

presenting results from mixed land 

uses 

1,900 990 910 10,300 9,600 2,000 743 

Miguntanna et al. (2013), 

presenting results from residential 

land use 

9,380 9,240 140 37,190 27,110 1,870 2,250 

 

Table 9. Build-up of mass per m
2
 of paved road surface prior to an event. 

 
TP NLP SRP TN TKN NO3 TSS 

 μg m
-2

 μg m
-2

 μg m
-2

 μg m
-2

 μg m
-2

 μg m
-2

 mg m
-2

 

Max 2,334 2,260 1,064 12,979 11,286 6,039 1,011 

Mean 529.52 337.29 193.85 3,170.51 2,254.24 925.60 170.05 

Std Dev 549.62 438.49 269.62 3,660.52 2,839.25 1,168.77 249.76 

Std Err 92.90 74.12 45.57 618.74 479.92 197.56 42.83 

N 35 35 35 35 35 35 34 
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 Brezonik and Stadelmann (2002) compiled runoff data from an urban and 

suburban database. Land use included paved surfaces as well as sites with natural 

features. Precipitation depths ranged from 0.001 inches to 0.91 inches. Precipitation 

intensity ranged from 0.01 in hr
-1

 to 1.8 in hr
-1 

(Brezonik and Stadelmann 2002). 

Miguntanna et al. (2013) vacuumed 3 m
2
 paved road plots and used a precipitation 

simulator to generate different intensities. The storm durations were 40 minutes, with 

rainfall intensities from 0.79 in hr
-1

 to 5.31 in hr
-1

.  

4.6.10. Predicting the Percentage of Mass Removed as a Function of Precipitation  

 Using the maximum mass loads found in this study, the percent mass removed 

for each constituent across a precipitation gradient are shown in Figure 16. Linear 

regression was found to be significant for each constituent, as shown in Table 10.  

 
Figure 16. Percent TKN, NO3

-
 , NLP, SRP and TSS mass removed by increasing precipitation (n = 

463, n = 410 for TSS) shown with the best fit line for each constituent. 
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Table 10. Linear regression parameters for the percent of total mass removed from the paved road 

surface as a function of precipitation, using the maximum mass build-up from this site. 

Parameter Linear Fit R
2
 

Regression 

Coefficient 

Standard 

Error 

T 

Ratio 

Prob > 

|t| 

TP 0.0457 + 0.6705*X 0.42 0.6705 0.0367 18.29 <0.0001 

NLP 0.0334+0.4399*X 0.21 0.4399 0.0393 11.21 <0.0001 

SRP 0.0289+0.5540*X 0.35 0.5540 0.0352 15.72 <0.0001 

TN 0.0209+1.0290*X 0.70 1.0290 0.0311 33.07 <0.0001 

TKN 0.0172+0.8068*x 0.53 0.8068 0.0355 22.70 <0.0001 

NO3
-
 0.0131+0.7047*X 0.72 0.7047 0.0204 34.59 <0.0001 

TSS 0.0241+0.6047*X 0.24 0.6047 0.0534 11.37 <0.0001 

 

In this linear model, 0.5 inches of precipitation is predicted to remove approximately 

38% of TP, 25% of NLP, 31% SRP, 54% of TN, 42% of TKN, and 37% of NO3
-
 mass. 

These results clearly dispute the commonly held assumption that 90% of the pollution 

will be mobilized by 0.5 inches of precipitation (Bach et al. 2010; Bertrand-Krajewski et 

al. 1998). 

4.6.11. Stormwater Partial Event Mean Concentration (PEMC) 

 The PEMC across the watershed events was variable, as can be seen in Figures 

17 a, b, and c. The average pollutant concentrations across the monitored precipitation 

depths in this study (PEMC) (Table 11) were on the low side overall, when compared to 

“full” EMC values from the literature (Table 12). TP, NLP, and SRP concentrations were 

similar to Hunt et al. (2006). TN and TKN constituents were slightly lower than EMC 

values reported in the national stormwater data compiled by Geosyntec Consultants and 

Wright Water Engineers (2012), but NO3
-
 concentrations were higher than Davis (2007). 

TSS values were slightly lower than Davis (2007).  
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a 

 

b 

 

c 

 

Figure 17 a, b, and c. Inflow TN, TKN, NO3 (a), TP, IP, SRP (b) and TSS (c) partial event mean 

concentration for each watershed event.  
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Table 11. Summary statistics for the partial event mean concentration (PEMC) from 2013 to 2014. 

PEMC 

 
TP NLP SRP TN TKN NO3 TSS 

 μg L
-1

 μg L
-1

 μg L
-1

 μg L
-1

 μg L
-1

 μg L
-1

 mg L
-1

 

Mean 104.33 66.82 37.99 570.18 380.22 195.53 23.07 

Std Dev 73.00 54.21 42.76 361.17 267.64 165.80 23.61 

Std Err 12.34 9.16 7.23 61.05 45.24 28.03 4.05 

Upper 95% Mean 129.41 85.44 52.68 694.25 472.15 252.49 31.30 

Lower 95% Mean 79.26 48.19 23.30 446.11 288.28 138.57 14.83 

Number of watershed events 35 35 35 35 35 35 34 

 

Table 12. Comparative literature review of inflow EMC results, in ascending order by TP 

concentration. NLP was derived from TP-SRP. 

Author TP NLP SRP TN TKN NO3 TSS 

Avg 

Rainfall 

Depth 

Notes 

 μg/L μg/L μg/L μg/L μg/L μg/L (mg/L) (in)  

 Dietz and Clausen 

(2005) 
19 - - 1,200 700 500 - - Roof runoff 

Alias et al. (2014) 74 - - 1,170 - - 40.54 0.099 
Average of 

all sites 

Hunt et al. (2006) 105 52 53 1,310 880 420 - 1.49 
Average of 

all sites 

Geosyntec 

Consultants and 

Wright Water 

Engineers (2012) 

110 100 10 1,250 940 260 37.5 - 
Median 

bioretention 

Passeport et al. 

(2009) 
137 80 57 1,662 1,106 419 - - 

Average 

Inflow 

Hathaway et al. 

(2012) 
195 135 60 - 1,510 360 91.35 0.831 

Average of 

all sites 

Geosyntec 

Consultants and 

Wright Water 

Engineers (2008) 

250 160 90 940 1,800 590 52.15 - 
Average 

Inflow 

Bratieres et al. 

(2008) 
427 300 127 2,210 - 790 160 - 

Laboratory  

Synthetic  

stormwater 

Brezonik and 

Stadelmann 

(2002) 

580 380 200 3,080 2,620 530 184 
0.9055 

(Max) 

Average of 

all sites 

Alias et al. (2014) 743 - - 1,167 - - 40.54 0.0993  
Average of 

all events 

Davis (2007) 1,200 - - - - 133 37.17 - 
Average of 

all events 

Lee and Bang 

(2000) 
6,670 2,878 3,792 - 12,417 620 172 - 

Average of 

all sites 
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4.7. Conclusions 

 The composition of stormwater from the small, paved, low to medium traffic 

roadway drainage arewas that were analyzed in our study was found to be dominated by 

TKN, NO3
-
, NLP, and SRP in descending order. Stormwater was found to contain 

approximately six times more TN mass than TP, with the majority of TN being 

comprised of TKN, and the majority of TP being comprised of NLP. The overall 

dominance of non-labile constituents in stormwater is encouraging as green stormwater 

infrastructure techniques have been shown to be effective at removing this fraction of 

stormwater pollutants.    

 Precipitation intensity (measured as flow rate) and volume were both highly 

correlated with mass for all constituents, and precipitation intensity was found to have a 

stronger influence on pollutant mobilization than volume, although it was not typically 

sustained throughout the storm events monitored. This has important implications, as 

larger pollutant mass loads could be generated by projected increases in precipiation 

intensity as a result of climate change.  

 Pollutant contituents were found to have distinct mobilization patterns, with 

NLP, TKN, and TSS being more closely correlated with flow rate, while SRP and NO3
-
 

were more closely correlated with volume. TSS mass mobilization was highly correlated 

with NLP and less so with SRP and NO3
-
, indicating that NLP may be able to be 

accurately modelled as a particle, but labile constituents (i.e., SRP and NO3
-
) should be 

seperately considered. TKN exhibited both labile and non-labile characteristics, as a 

grouped measure. A small portion of the mass build-up on the road surface was 
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influenced by the number of antecedent dry days, antecedent precipitation conditions, and 

temperature; however, their influence appears to be limited to the beginning of a storm 

event, and did not have a significant influence on the total mass load measured over a 

longer duration of an event. 

 The total mass upon the road surface in this study may not have been completely 

mobilized, and may have been lower than loads found elsewhere, yet it is clear, that 

pollutant mass was not entirely depleted from the paved road surface during the majority 

of storm events. A mass-based first flush was seen for some constituents during some 

storm events, however, the MFF was not observed for labile N and P constituents or TSS 

overall, and the strength of the MFF was not significantly different between pollutant 

constituents.  

 More research is needed to estimate the precipitation volume that would be 

required to remove total mass build-up of different forms of pollution (e.g., labile and 

non-labile) from the road surface, and from other land use types. Based on this research, 

the FF concept may not be an adequate method for determining a WQv to treat pollutant 

mass from a paved road surface.  
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Abstract  

 

 Bioretention is a stormwater management tool that is becoming increasingly 

popular in both the private and public sectors, yet there are many unanswered questions 

regarding the factors that contribute to performance variability, and resiliency in the face 

of projected increases in precipitation due to climate change in the northeastern U.S. It is 

also unclear if bioretention systems, like wetlands, will be a source of greenhouse gas 

emissions. This research evaluated how critical design factors, such as soil media and 

vegetation, influenced hydrologic performance (i.e., reduction in peak flow rate and 

volume) and the removal of total suspended solids and nutrients (N and P species), and 

greenhouse gas (GHG; nitrous oxide, methane and carbon dioxide) emissions, from 

stormwater under ambient and increased water inputs (i.e., rainfall plus runoff). A 

conventional, sand and compost based, bioretention soil media was compared to a 

proprietary media designed to remove phosphorus, Sorbtive Media™. Two vegetation 

mixes were also compared for sediment and nutrient retention. 

 

 Non-labile phosphorus, total suspended solids, and total Kjeldahl nitrogen mass 

were well retained by all treatments, including under simulated increases in precipitation.  

However, the compost amendment in the conventional soil media was found to release 

labile nitrogen and phosphorus, far surpassing the mass loads in incoming stormwater. 

When compared with conventional media, Sorbtive Media™ was highly effective at 

removing labile phosphorus and was also found to enhance nitrate removal.  Deep rooted 

systems containing Panicum virgatum (Switchgrass) were found to be particularly 

effective at removing both labile and non-labile constituents. Overall, none of the 

bioretention treatments were found to be a significant source of N2O and were small sinks 

for CH4 in most treatments. Overall, this research shows that bioretention cells are an 

important tool in increasing local climate change resiliency, with regards to increases in 

precipitation in the northeastern U.S., and that the selection of vegetation and soil media 

highly influences the overall removal of labile nutrients.   
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5.1. Introduction 

5.1.1. Stormwater and Climate Change 

 In the northeastern United States, precipitation has increased by 5-10 percent 

since 1900 (Frumhoff et al. 2007). This trend is predicted to continue under both high and 

low greenhouse gas (GHG) emission scenarios (Frumhoff et al. 2007; Guilbert et al. 

2015). Changes in precipitation due to climate change are likely to have a direct impact 

on stormwater volumes and velocities in the urban landscape, which have already been 

severely altered by impervious surfaces (e.g., roads, rooftops, parking lots and 

driveways). Masterson and Bannerman (1994) have shown  > 200% increases in stream 

flow rates after a storm event, from pre to post development (Masterson and Bannerman 

1994). High stormwater velocities mobilize and transport pollutants e such as non-labile 

phosphorus (NLP), soluble reactive phosphorus (SRP), organic nitrogen (ON), total 

Kjeldahl nitrogen (TKN), nitrite (NO2
-
), nitrate (NO3

-
), total suspended solids (TSS), 

cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), zinc (Zn), 

polychlorinated biphenyls (PCB’s), polycyclic aromatic hydrocarbons (PAHs), as well as 

long chain hydrocarbons (oil/grease), bacteria, and pathogens from impervious surfaces 

(National Research Council 2008; U.S. Environmental Protection Agency 1998). 

Thousands of waterbodies in the United States are already categorized as “impaired” and 

have been required to develop a pollution budget, called a total maximum daily load 

(TMDL) (U.S. Environmental Protection Agency 2008). Increased precipitation due to 

climate change may exacerbate already challenging water quality impairment problems in 

some regions. 
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 Bioretention systems, also known as rain gardens (Davis 2008; Dietz and 

Clausen 2006; Hunt et al. 2008), biofilters (Zinger et al. 2013), and bioswales (Collins et 

al. 2010), are composed largely of soil media and vegetation that are intended to remove 

stormwater pollutants while also retaining and detaining stormwater volumes and 

reducing peak runoff velocities to more closely mimic pre-development hydrology. 

Bioretention systems are one type of physical practice listed within the broader category 

of alternative stormwater infrastructure termed Green Stormwater Infrastructure (GSI) 

(Nylen and Kiparsky 2015; Palmer 2012) or Water Sensitive Urban Design (WSUD) 

(Alias et al. 2014; Blecken et al. 2009; Taylor and Wong 2002; Wong 2006), which falls 

under the broader alternative approach to traditional land development called Low Impact 

Development (LID) (Brown and Hunt 2011; Dietz 2007). In addition to improving water 

quality, bioretention systems can serve as a public amenity, providing improved 

aesthetics and habitat value to pollinators and other wildlife (U.S. Environmental 

Protection Agency 2015).  

 These systems are rapidly growing in popularity, in both the public and private 

sectors, and are encouraged by stormwater regulators as a Best Management Practice 

(BMP) under the National Pollutant Discharge Elimination System (NPDES)  (National 

Research Council 2008). The NPDES program is under the umbrella of the Clean Water 

Act (CWA) and is the primary vehicle through which the federal government regulates 

the quality of the nation’s waterbodies (National Research Council 2008).  Despite being 

widely promoted, and required in some instances, there are still many unknowns 

regarding the strengths, limitations, and resiliency of bioretention systems. 
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5.1.2. Bioretention Design Features and Performance Review 

 Some of the many design features that affect the pollutant removal performance 

of bioretention, and other GSI systems, include: residence time (Collins et al. 2010; 

Hurley and Forman 2011; Kadlec et al. 2010; Rosenquist et al. 2010; Sansalone and 

Cristina 2004); media depth (Brown and Hunt 2011); vegetation type, root depth, type 

and architecture (Claassen and Young 2010; Claytor and Schueler 1996; Collins et al. 

2010; Davidson et al. 2000; Davis et al. 2009; Kadlec et al. 2010; Lucas and Greenway 

2008; Read et al. 2008); organic matter content (Bratieres et al. 2008; DeBusk and Wynn 

2011; Fassman et al. 2013; Leytem and Bjorneberg 2009; Thompson et al. 2008); use of 

mulch (Bratieres et al. 2008; DeBusk et al. 2011; Dietz and Clausen 2006); percent sand, 

silt and clay (Liu et al. 2014); chemical characteristics of the soil media (e.g., amount of 

iron, calcium, and aluminum) (Arias et al. 2001; Groenenberg et al. 2013; Vance et al. 

2003); ponding depth,  hydraulic conductivity and infiltration rate (Thompson et al. 

2008); and the inclusion of features such as an internal water storage zone (IWS) (Chen 

et al. 2013; Dietz and Clausen 2006; Hunt et al. 2006; Kim et al. 2003). Proper 

maintenance and care taken during construction to avoid soil compaction are also critical 

factors that will affect the long term performance of bioretention (Brown and Hunt 2011; 

Dietz and Clausen 2006).  

 Each of the design features listed above plays an important role in the 

performance of bioretention systems, yet they are not always complementary. For 

example, phosphorus reduction via sorption can be reversed under reduced conditions 
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(Basta and Dayton 2007), yet prolonged saturation is required for denitrification 

(Thomson et al. 2012). A critical review of select design features is provided below. 

5.1.2.1 Particulate Pollutant Removal Mechanisms  

 It is understood that sediments or total suspended solids (TSS) in stormwater are 

typically removed through extended detention and physical filtration of fine particles 

within the bioretention soil media; removal rates between 70% and 99% are common 

(Bratieres et al. 2008; Brown and Hunt 2011; Hatt et al. 2008; Hsieh and Davis 2006). 

Extreme drying conditions have been shown to negatively impact TSS removal 

performance in soils with higher clay content (Blecken et al. 2009),or as drying increases 

the size of macropore channels, which may release previously removed sediment in the 

next storm event (Lintern et al. 2011). It is possible that the non-labile fractions of N and 

P may have similar removal mechanisms as TSS, based on their inherently larger particle 

sizes (Chen et al. 2013; Claytor and Schueler 1996; Davis 2007; Zinger et al. 2013), 

although the sand-dominated bioretention soil media used in this research is not likely to 

exhibit extreme shifts in macropore size due to drying. The distinctive removal 

mechanisms of the different fractions of N and P are not well characterized within 

bioretention (Brown et al. 2013; Lefevre et al. 2015). 

5.1.2.2 The Role of Vegetation in Pollutant Removal  

 Many stormwater and LID design manuals specify that bioretention systems 

should be planted (Collins et al. 2010; Davis et al. 2001, 2006; Dietz and Clausen 2005, 

2006; Dietz 2007; Hatt et al. 2008; Hunt et al. 2006; Kim et al. 2003), yet few go as far as 

to specify the pollutant removal benefits that different vegetation types (e.g., ground 
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cover, shrubs, perennials, or trees) might provide  (Dietz and Clausen 2005).  Vegetation 

plays a significant role in the removal of labile N and P (Lintern et al. 2011) from the soil 

pore water stored between precipitation events (Serna et al. 1992); yet nutrient uptake is 

highly variable and dependent on root architecture, biomass, depth and type (e.g., fibrous 

vs woody) (Brix 1994, 1997; Le Coustumer et al. 2012; Dietz and Clausen 2006; Read et 

al. 2008; Tanner 1996).  

 Read et al. (2008) found that pollutant concentration in the effluent from 

bioretention negatively correlated with root mass for nearly all N and P constituents, with 

root mass explaining 20 – 37% of the variation in effluent concentration. The authors 

suggest that deep rooted plants may provide important long term performance benefits to 

bioretention systems. Most plants favor shallow rooting depths due to lower energy costs 

for development and maintenance, short-term access to nutrients, close proximity to 

incoming water, and high oxygen content in upper soil horizons (Edwards 1992; Preti et 

al. 2010; Schenk 2008). However, evidence also suggests that long-term nutrient 

availabilities (P, Ca
2+

, K
+
, and Mg

2+
) tend to be greater at depth in semi-arid and arid 

ecosystems (McCulley et al. 2004), which may be homologous to the sand-based systems 

commonly used in bioretention (Houdeshel et al. 2015). Certain plants, such as 

switchgrass (Panicum virgatum), may have adapted deep roots to adjust to this type of 

environment (Preti et al. 2010; Schenk 2008).  

 Thick-rooted plants have been shown to help maintain long-term soil 

permeability and reduce clogging of bioretention systems (Le Coustumer et al. 2012). By 

contrast, fine-stemmed vegetation such as grasses, sedges, and rushes have been shown to 
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be highly efficient at providing above-ground filtering capacity (Gagnon et al. 2012). Our 

current understanding of the role of vegetation in removing labile pollutants in 

bioretention systems in extremely limited (Lefevre et al. 2015), and warrants further 

investigation.   

5.1.2.3. Bioretention Soil Media and the Addition of Organic Amendments 

  The engineered soil media used in bioretention designs varies, and may include 

native soil removed during construction (Dietz 2007) and/or imported material, such as in 

the cases when native soil infiltration rates are not optimal. Use of imported sand based 

media is common and the addition of an organic amendment is often recommended 

(Bratieres et al. 2008; DeBusk and Wynn 2011; Michigan Department of Environmental 

Quality 2008; Thompson et al. 2008; Vermont Agency of Natural Resources 2002a; 

Washington State University Pierce County Extension 2012).  

 Organic matter (e.g., compost, mulch) provides nutrients to plants during the 

establishment phase, soil moisture retention, cation exchange capacity and fosters 

microbial growth (Kim et al. 2003; Lintern et al. 2011). Thompson et al. (2008) found 

that the addition of compost in bioretention increased saturated hydraulic conductivity, 

aggregate stability, and water holding capacity, and decreased bulk density. Mulch is 

often included in the surface of bioretention designs to retain moisture and subdue weed 

growth, as one would use mulch in a traditional landscaping setting (Davis et al. 2001, 

2006; Dietz and Clausen 2005, 2006; Dietz 2007; Hunt et al. 2006). While mulch and 

other organic amendments have been shown to be highly effective at removing metals 

(Hsieh and Davis 2006; Muthanna et al. 2007; Seelsaen et al. 2006), there is concern that 
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the benefits provided by organic amendments may be undone by their potential to release 

nutrients (Hunt et al. 2006; Lefevre et al. 2015). The following section reviews the 

nutrient retention and export associated with bioretention soil media. 

5.1.2.4. Inconsistent Labile N and P Removal in Bioretention 

 Soils and organic amendments contain two major nutrient pools: 1) insoluble 

particulate organic and inorganic N and P (non-labile) and 2) dissolved organic and 

inorganic N and P (labile), which are in soil solution. The organic portion of the pool in 

traditional soils is variable, usually ranging from 20% to 80% (Schachtman et al. 1998). 

SRP, NO3
-
, and NH4

+
 are examples of inorganic labile nutrients that can be leached from 

the soil profile during a storm event (Schachtman et al. 1998). Total Kjeldahl nitrogen is 

a grouped measure, and contains both labile (NH3, NH4
+
) and non-labile (organic 

nitrogen) components, making it more complex. Labile nutrients removed within the 

bioretention soil media by vegetative uptake or absorption within the soil itself (i.e., 

water holding capacity of the soil) may be replaced by the decomposition and 

mineralization of any organic matter present within the soil (Basta and Dayton 2007). If 

plant uptake and water retention process are les dominant than decomposition and 

mineralization, labile forms of N and P may not be well retained by bioretention systems 

(Blecken et al. 2010; Clark and Pitt 2009; Dietz and Clausen 2005; Hsieh and Davis 

2003, 2006; Hunt et al. 2006; Lucas and Greenway 2011).  

As outlined in the latest review of bioretention performance by Lefevre et al. 

(2015), labile nitrogen and phosphorus removals reported to date have been extremely 

variable, ranging from -630% to 98% for nitrate and from -78% to 98% for SRP 
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(Bratieres et al. 2008; Dietz and Clausen 2005; Geosyntec Consultants and Wright Water 

Engineers 2012; Hatt et al. 2008; Hunt et al. 2006; Li and Davis 2009). Geosyntec 

Consultants and Wright Water Engineers (2012) conducted a comprehensive review of 

the International Stormwater BMP Database and found a net export of labile P from 

bioretention overall. Bratieres et al. (2008) found SRP removal rates of greater than 83% 

in all media, except that with 10% leaf compost and mulch, which resulted in a net export 

of  SRP, which was greater than 78%.  

Nutrient export from bioretention systems may be attributable to soils and/or 

amendments; these components may be deliberately included in bioretention designs or 

inadvertently imported to the systems, such as within potting mixes used in containers of 

plant material. Debusk et al. (2011) found that leaf compost contained 900 mg kg
-1

 of TP 

and 13,500 mg kg
-1

 of TN, potting soil had 400 mg kg
-1

 of TP and 2,270 mg kg
-1

 of TN, 

and mulch contained 335 mg kg
-1

of TP and 1,800 mg kg
-1

 of TN. Topsoil had the lowest 

N and P, with 200 mg kg
-1

 of TP and 594 mg kg
-1

 of TN (Debusk et al. 2011). Herrera 

Environmental Consultants (2012) found that the bioretention soil mixture used in the 

City of Redmond, WA contained approximately 660 mg kg
-1

 of TP. All of the above 

were considered to contribute some N and P to the effluent of the bioretention systems.  

 Despite these results, there is a dominant, relevant concern that limiting the 

organic matter in bioretention soils would be detrimental to vegetation establishment, and 

potentially lessen metals removal performance.  Organic amendments, such as compost 

and mulch are, thus, still being broadly recommended and used in bioretention cells 
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(Brown and Hunt 2011; Thompson et al. 2008; Vermont Agency of Natural Resources 

2002a; Washington State University Pierce County Extension 2012).   

 Hunt et al. (2007) concluded that if the bioretention soil media was low in 

available phosphorus (naturally or by design), then it would be unlikely to export 

phosphorus in the future.  New research is being conducted to specifically engineer soil 

media to remove phosphorus within bioretention and other stormwater management 

applications through selective inclusion of different metals and textures within the soil, as 

well as the chemical engineering of new proprietary media (e.g. Sorbtive Media ™, Blue 

Pro®). A review of phosphorus sorption mechanisms is provided below. 

5.1.2.5. Soil Media Designed to Remove Labile P 

 Labile phosphorus can be removed from solution through precipitation and 

sorption reactions (also called fixation, surface complexation, ion exchange and ligand 

exchange), which vary in their bonding strength and relative stability, depending on 

mineral structure and pH (Sollins et al. 1988). In alkaline conditions, phosphorus reacts 

with calcium, becomes insoluble, and precipitates from solution (Sollins et al. 1988). In 

more acidic conditions, iron (Fe) and aluminum (Al) are thought to be the main drivers of 

phosphorus sorption (Arias et al. 2001; Gerritse 1993; Weng et al. 2012). A few factors 

that can change soil pH include exudation of citric and malic acids (Horst et al. 2001; 

Plaxton and Podestá 2006), the release of H
+
 during NH4

+
 uptake or nitrification, and the 

removal of base cations (Ca
2+

, Mg
2+

, K
+
) by plants (Serna et al. 1992). 

Sorption can occur through the formation of outer sphere (adsorption) or inner 

sphere (absorption) complexes (Sollins et al. 1988; Weng et al. 2012). Outer sphere 
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complexes result from the formation of positive or negative charges on the particle 

surface, which attract the opposite charge. Aluminosilicate clays and sesquioxides 

(oxides, hydroxides and oxyhydroxides) of Fe and Al provide the majority of the surface 

adsorption potentials (Sollins, Homann, and B. A. Caldwell 1996). Outer sphere 

adsorption is electrostatic, highly pH-dependent, and easily reversible. Inner sphere 

complexes can form when a functional group (e.g., hydroxyl) on the particle surface is 

replaced by an ion complex, resulting in the formation of a covalent bond (Essington 

2004; Sollins et al. 1988). Inner sphere complexes are stronger than outer sphere due to a 

lack of water molecules separating the ion from the soil surface charge. Inner sphere 

phosphorus sorption occurs when surface hydroxyls are replaced by phosphate and form 

covalent bonds with Al, Fe, or Si (Sollins et al. 1988; Weng et al. 2012).  

 Researchers have begun to apply these concepts in bioretention, to develop 

media that maximizes phosphorus retention. A list of the Ca, Al, and Fe contents of 

various media that have been trialed for P sorption are presented in Table 13. 
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Table 13. Soil Fe, Al, Ca, and SRP content in bioretention media targeting phosphorus removal. 

Reference Media Composition Ca 

(mg/kg) 

Fe 

(mg/kg) 

Al 

(mg/kg) 

SRP 

(mg/kg) 

TP 

Removal 

(%) 

Liu et al. 

(2014) 

TerraSolve 15% coir and peat mix, 

9% shredded hardwood 

mulch, 12% aluminum-

based water treatment 

residuals (WTRs), 58% 

sand 

- 1,979 7,541 196 90– 99 

Biofilter 25% saprolite, 20% 

papermill sludge 

compost, 50% sand 

- 10,107 4,124 179 54 – 96 

Virginia 

Institute of 

Technology 

Mixture  

3% wastewater 

treatment residuals, 

15% saprolite, 25% yard 

waste compost (YWC), 

57% sand 

- 6,613 3,367 138 58 – 95 

Stoner et 

al. 

(2012) 

Industrial 

Byproducts 

Geothite, gypsum, 

calcite, quartz, 

portlandite 

90 – 

6,500 

600 – 

40,000 

60 – 

58,000 

- 10 – 60 

Arias et 

al. (2001) 

Denmark 

Sands 

Quartz sand 

 

600 1,210 320 40 - 

Chardon 

et al. 

(2005) 

Iron-coated 

Sand 

Iron-coated sand 6,100 198,000 620 3,400 94 

 

For instance, Chardon et al. (2005) tested the phosphorus sorption capacities of iron-

coated sand, a byproduct of the drinking water industry in the Netherlands. The authors 

found that the material had an average P removal efficiency of 94%.  Stoner et al. (2012) 

found that the controlling factors in P removal were dependent on the dominant mineral 

association. For instance, in systems dominated by calcium, when the primary P removal 

mechanism was chemical precipitation, the inflow P concentration and total retention 

time (between0.5 and 10 minutes), were the most important factors. In systems 

dominated by Fe and Al, where ligand exchange was the primary P-removal mechanism , 

retention time did not play as large a role in removal as incoming P concentrations and 

total Fe and Al content (Stoner et al. 2012). 
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5.1.2.6. Nutrients Dynamics within an Internal Water Storage Zone (IWS) 

 Although metal sorption seems promising for removing labile P, doubts are 

often raised regarding its longevity if the conditions become anaerobic. In an anaerobic 

environment, oxygen depletion forces the microbial communities to utilize electron 

acceptors preferentially, in the following order:  O2 > NO3
-
 > Mn

6+
 > Fe

3+
 > SO4

2-
 

(Spivakov et al. 1999). This produces the reduced version of the species, which includes 

N2 (and other reduced forms of N), Mn
2+

, Fe
2+

, and S
2- 

or H2S.  The reduced form of ferric 

iron (Fe
3+

), is ferrous iron (Fe
2+

), which is soluble and can release phosphorus previously 

bound to it (Spivakov et al. 1999). Anaerobic conditions are most likely to occur in 

bioretention designs which include an internal water storage (IWS) zone for enhanced 

nitrogen removal via denitrification, yet phosphorus removal data from these systems 

have been variable (Passeport et al. 2009), with enhanced phosphorus removal only in 

some cases. For instance, Hunt et al. (2006) found SRP concentrations from designs with 

IWS zones (520 μg L
-1

) were lower than from designs without an IWS zone (2,200 μg L
-

1
). Dietz and Clausen (2006) showed some of the lowest outflow TP concentrations 

reported (39 μg L
-1

 to 43 μg L
-1

), in a system designed with an IWS zone. It is unclear 

what conditions will lead to phosphorus desorption in bioretention, and this warrants 

future research.   

 Although nitrogen is widely recognized as the key nutrient controlling primary 

production and eutrophication in saltwater systems (Correll 1999; Davis et al. 2006; 

Zinger et al. 2013), there is increasing discussion regarding the importance of nitrogen in 

freshwater systems as well (Turner and Rabalais 2013). Nitrogen transformation 
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dynamics are complex, with nitrification and denitrification occurring simultaneously 

within aerobic and anaerobic microsites throughout a soil aggregate, respectively (Vilain 

et al. 2014). Nitrate is often exported from bioretention cells, with soil media likely being 

a significant contributor (Davis et al. 2001, 2006; Hunt et al. 2006). In an attempt to 

increase nitrate removal, IWS zones have been trialed to promote denitrification (Chen et 

al. 2013; Dietz and Clausen 2006; Hunt et al. 2006; Kim et al. 2003). The results have 

been somewhat successful, although the necessary conditions for optimal denitrification 

(e.g., labile carbon content, saturation duration, optimal electron donors) in bioretention 

are still not fully understood. A summary of conditions influencing nitrate removal in 

bioretention is provided in Table 14.  

Table 14. Nitrate removal from bioretention designs with an internal water storage (IWS) zone. 

Reference Inflow 

(μg L
-

1)
 

Outflow
 

(μg L
-1

) 

Estimated 

Retention 

Time (hrs) 

Drainage 

Configuration 

Soil Media Infiltration 

(cm hr
-1

) 

Kim et al. 

(2003) 

2,300 1,400 

3,760 

15 – 20 Elevated 

underdrain 

1) sawdust 

2) wheat straw 

3) woodchips 

4
 

Hunt et al 

(2006) 

340 280 - 

300 

4 - 22 Elevated 

underdrain 

Sandy loam and 

sand 

7.62  – 38.1
 

Dietz and 

Clausen (2006) 

900 300 - 

400 

17 Elevated 

underdrain 

Native loamy 

sand 

3.5
 

Lucas and 

Greenway 

(2008) 

880 40 1) 1 

2) 1 

3) 12-18 

Elevated 

underdrain 

1) pea gravel 

2) sand 

3) loam 

18 

18 

2.0 – 4.5 

 

5.1.3. Bioretention Designs and Greenhouse Gas (GHG) Emissions 

5.1.3.1. Carbon Dioxide (CO2)  

 Soil respiration is the sum total of CO2 released by root respiration and the 

decomposition of root exudates and organic matter by heterotrophs (Mith et al. 2003; 
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Rochette and Hutchinson 2005). Soil respiration is thought to emit between 10 and 15 

times more CO2 than the burning of fossil fuels (Mith et al. 2003), and is the second 

largest terrestrial carbon flux (Bond-Lamberty and Thomson 2010). Soils store at least 

twice the amount of CO2 than is in the atmosphere, which makes them an important 

global sink (Bond-Lamberty and Thomson 2010). 

 Global circulation models show that rising temperatures resulting from climate 

change may accelerate decomposition of soil carbon through microbial respiration 

(Giardina and Ryan 2000), however the amount is unclear. There is high spatial and 

temporal variability in soil respiration; thus research that gathers CO2 soil emissions data 

from a wide variety of local soil conditions will ultimately help refine global models. 

Some of the broad factors that contribute to the variability in CO2 emissions from soils 

include temperature (e.g., Q10 factor), moisture, and the productivity of vegetation (Bond-

Lamberty and Thomson 2010).  

 Smart and Peñuelas (2005) found that a spike in CO2 emissions from soils 

occurred after a simulated precipitation event, resulting from the displacement of soil 

pore gases by water. CO2 returned to pre-precipitation levels approximately 4 hours after 

the event (Smart and Peñuelas 2005). The authors suggested that fine rooted vegetation 

may have alloted more belowground carbon via rhizodeposition than larger woody roots, 

providing more substrate for respiration and higher CO2 emissions.  

5.1.3.2. Nitrous Oxide (N2O) 

 Soil microbial nitrification and denitrification both contribute nitrous oxide 

(N2O) to the atmosphere, with the latter also being a sink for N2O in some cases 
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(Bouwman 1998; Chapuis-Lardy et al. 2007; Conrad 1996; Zhuang et al. 2012). N2O is a 

long-lived trace gas, with an atmospheric lifespan of 144 years (Bond-Lamberty and 

Thomson 2010), and a 100-year warming potential that is 298 times higher than carbon 

dioxide (Butterbach-Bahl et al. 2013; Dalal et al. 2003; Del Grosso and Parton 2012; 

Thomson et al. 2012). N2O contributes approximately 6% to the overall global radiative 

forcing, or ability to influence the energy balance in the atmosphere, and is currently the 

most important natural cause of stratospheric ozone depletion (Butterbach-Bahl et al. 

2013; Del Grosso and Parton 2012; Portmann et al. 2012; Ravishankara et al. 2009; 

Thomson et al. 2012).   

 Both nitrification and denitrification processes are enhanced by the availability 

of nitrogen and carbon in the soil (Del Grosso and Parton 2012); maximum production of 

N2O is most prevelant in the surface soil, where the majority of the microbial biomass is 

located (Nesbit and Breitenbeck 1992). Vilain et al. (2014) found that N2O emissions via 

denitrification were significantly greater in topsoils (10 – 30 cm) as opposed to subsoils 

(90-110 cm), with ranges of 26 to 250 ng g
-1

 hr
-1

 N2O-N and 1.5 to 31 ng g
-1

 hr
-1

 N2O-N 

in topsoil and subsoils, respectively. 

 Soil water content is also a key influencing factor in N2O emissions, for water 

can result in displacement of gases previously trapped in the soil matrix, create localized 

anoxic conditions that encourage denitrification, or effectively block gas from escaping 

through soil macropores if they are filled with water (Davidson et al. 2000).  

WFPS for many soils at field capacity is about 60%, where micropores are filled with 

water and macropores are filled with air (Castellano et al. 2010). This dynamic hybrid-
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condition allows both oxidative and reductive processes to take place.  When WFPS is 

between roughly 50% and  60%, N2O emissions are thought to predominantly be the 

result of nitrification, whereas when WFPS is greater than 60%, N2O emissions are 

thought to begin to occur predominantly as a result of denitrification (Bouwman 1998; 

Davidson et al. 2000), although field measurements frequently diverge from this model, 

making it difficult to generalize (Chapuis-Lardy et al. 2007). 

 Although most soils act as a net source of N2O emissions, uptake or 

consumption has also been observed (Butterbach-Bahl et al. 2013; Chapuis-Lardy et al. 

2007; Conrad 1996; Schlesinger 2013). The term “uptake” describes both the flux of a 

gas from the atmosphere to the soil, as well as the transformation of one gas to another 

(i.e., N2O reduction to N2 via reduction) (Chapuis-Lardy et al. 2007). N2O uptake is 

thought to occur in soils with low available NO3
-
, predominantly as a result of 

denitrification, where heterotrophic bacteria utilize nitrogen oxides as an energy source 

and terminal electron acceptor (Chapuis-Lardy et al. 2007; Conrad 1996; Schlesinger 

2013). Above 80% WFPS, N2O consumption is predicted to occur via denitrification, 

with N2 being the main end product (Bouwman 1998). Abiotic reactions between N2O 

and the soil minerals (Fe
2+

, Cu
2+

)  may also be involved in the net consumption of N2O as 

a result of chemodenitrification, but these processes are not well understood (Chapuis-

Lardy et al. 2007). There are many factors that are still unknown with regards to the 

controlling factors on N2O consumption in soils; consumption has been reported under 

variable conditions, making it difficult to generalize regarding the particular conditions 

which lead to N2O uptake (Chapuis-Lardy et al. 2007). 
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 In bioretention cells, some N2O uptake and/or emissions is expected to occur in 

the soil surface layers (Conrad 1996; Vilain et al. 2014); however, it is also possible that 

dissolved organic carbon and the nitrate produced during nitrification will infiltrate into 

the soil profile with precipitation (Conrad 1996). Accumulation of these compounds may 

be encouraged in designs that include an IWS or an impermeable liner, which may result 

in denitrification. Conversely, predominantly sand-based bioretention media may 

maintain aerobic conditions and encourage nitrification. The resulting positive or 

negative N2O flux in conditions within bioretention cells has not been well characterized 

to date.  

5.1.3.3. Methane (CH4) 

 Methane (CH4) has caused roughly 20% of the human-induced increase in 

radiative forcing since 1750 (Kirschke et al. 2013; Nisbet et al. 2014). After nearly a 

decade of stable levels, global atmospheric methane concentrations increased by 8.3 +/- 

0.6 ppb from 2007 to 2008 (Nisbet et al. 2014), reaching 1,799 ± 2 ppb in 2010 (Kirschke 

et al. 2013). High temperatures in the arctic, increased precipitation in the tropics, fossil 

fuel burning, and increased emissions from wetlands have been listed as possible causes 

(Dlugokencky et al. 2009; Kirschke et al. 2013). Methane production in soils occurs via 

the microbial decomposition of organic compounds under prolonged anaerobic 

conditions (Higgins et al. 1981; Kirschke et al. 2013; Le Mer and Roger 2001), with 

emissions typically lower than 10 mg CH4 m
-2

 hr
-1

 (Le Mer and Roger 2001). CH4 

production occurs only after O2, NO3
-
, Fe (III), Mn (IV) and SO4

2-
 have been reduced 

(Mith et al. 2003). 
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 In an aerobic environment, certain soil bacteria can use atmospheric methane as 

an energy source, making them an important global CH4 sink (Kaye et al. 2004). Methane 

consumption rates are thought to be highest in soils where methanogenesis was recently 

producing higher concentrations than the atmosphere (Le Mer and Roger 2001). Nesbit 

and Breitenbeck (1992) suggest that recently drained or intermittently flooded soils are 

likely to display the greatest CH4 uptake. Several early field studies have demonstrated 

that well-aerated soils can serve as sinks for atmospheric CH4 (Harriss et al. 1982; 

Higgins et al. 1981; Keller et al. 1986; Steudler et al. 1989), although actual values vary 

widely. There is little research to date on CH4 emissions from bioretention, or how these 

emissions are affected by different soil media, vegetation, or increases in precipitation.  

5.1.3.4. Increased Precipitation and Greenhouse Gas Emissions 

 Changes in precipitation due to climate change will directly impact soil 

moisture, which is one of the main factors controlling whether soils are a source or a sink 

for N2O and CH4. Some of the many other factors include temperature, soil nitrogen, and 

soil carbon content (Castellano et al. 2010; Connor et al. 2010; U.S. Climate Change 

Science Program and the Subcommittee on Global Change Research 2008). As 

bioretention and other stormwater mitigation strategies are introduced into the landscape, 

it is important to understand their role as a source or sink for GHGs, and to predict how 

current designs will respond to increases in stormwater volume that are likely to occur in 

the northeast due to climate change. Further, by investigating the gas component of 

nutrient and carbon cycles, we can deepen our understanding of the internal dynamics of 

the cells themselves. This research will attempt to provide information regarding the soil 



www.manaraa.com

 

 

 

131 

 

gas dynamics (CO2, N2O, and CH4) within bioretention cells under various conditions 

throughout the majority of the growing season.  

 

5.2. Methods 

5.2.1. Research Goals and Hypotheses 

 The broad goals of this research are to improve our collective understanding of 

fundamental bioretention pollutant removal mechanisms and to clarify how various 

design features and environmental conditions affect them. Specifically, the objectives of 

this research are to 1) compare the influence of (a) vegetation, (b) soil media, and (c) 

increased precipitation, on the retention of nutrients, sediment, and soil greenhouse gas 

flux (CO2, N2O, CH4) on performance of small bioretention systems. The specific 

hypotheses are as follows:  

1) The vegetation palette with numerous species with variable root depths is 

predicted to remove more nutrients and sediment than one with fewer species and 

deep roots.  

2) The soil media that includes reactive cations (Sorbtive Media™) is predicted to 

remove more labile P than a conventional soil media.  

3) Increased precipitation and runoff is predicted to decrease nutrient and sediment 

retention in bioretention and increase the production of N2O and CH4. CO2 

emissions are predicted to decrease with increased precipitation and volume.  
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5.2.2. Site Context 

 The University of Vermont (UVM) Bioretention Laboratory was constructed on 

the UVM campus located in Burlington, Vermont, in November of 2012. Burlington 

receives approximately 37 inches (0.940 m) of rainfall, and 81 inches of snowfall (2.06 

m) a year (NOAA, National Weather Service). There are eight bioretention cells on the 

study site, which capture road runoff from an area of approximately 5,002 ft
2
 (464.7 m

2
) 

or 0.115 acres. Data from seven of the bioretention cells are reported here. The drainage 

areas of the paved road sub-watersheds range from 320 ft
2 

to 1,293 ft
2
 (29.73 m

2
 to 

120.12 m
2
), and were delineated from the crown of the road, at a 45-degree angle to a 

granite curb, which ends at a trapezoidal curb cut at the entrance of each bioretention cell. 

Stormwater is directed from the road surface, through the curb-cut, and across a narrow 

conveyance strip, ranging from 3.72 m
2
 to 19.20 m

2
, which was lined with rubber EPDM 

membrane and covered with 2 to 4-inch stone prior to entering the bioretention cell 

inflow monitoring equipment. The road is one of the main thoroughfares for bus and 

automobile traffic entering the UVM campus. A list of the bioretention design parameters 

is provided in Table 15.  

Table 15. Site specifications for the University of Vermont Bioretention Laboratory 

Construction Completion Date  November 2012 

Sampling Date Range  June - November 2013 & May - October 2014 

Total Drainage Area Range Including Conveyance 34.7 m
2
 – 136.8 m

2 

Cell Dimensions Rectangular: 10 ft (3.048 m) x 4 ft (1.219 m)  

Media Depth 3 feet (0.9144 m) 

Bioretention Cell Surface Area 40 ft
2
 (3.72 m

2
) 

Cell Surface Area to Drainage Area Ratio 3 – 11% 

Sorbtive Media ™ Depth (in two cells) 3 inches (0.0762 m) 

Bioretention Ponding Depth 6  inches (15.24 cm) 
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 The eight bioretention cells are rectangular, equally sized, parallel to the road, 

and have dimensions of 4 ft (1.2192 m) wide x 10 ft (3.048 m) long x 3 ft (0.9144 m) 

deep with approximately 6 inches (15.24 cm) of ponding depth. The layout of a typical 

cell, displaying the location of the monitoring equipment, is shown in Figure 18. 

Figure 18. Layout view of a typical bioretention cell at the UVM Bioretention Laboratory.  
 

The cells are fully enveloped by an EPDM impermeable rubber liner, and contain an 

underdrain at one end, which ultimately connects back to the existing storm sewer 

network. Each of the bioretention cells has specially designed monitoring infrastructure at 

the entrance (inflow) and exit (outflow), which will be described in future sections. 

5.2.3. Bioretention Design Overview 

 The section profiles of the two media designs used in this study are shown in 

Figure 19. The top 12 inches (0.3048 m) of each bioretention cell is composed of 60% 

sand and 40% compost, by volume, as recommended by Washington State University 

Pierce County Extension (2012) and the Vermont Agency of Natural Resources (2002). 
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Figure 19. Bioretention Profiles: Conventional Media (CM) (left), Sorbtive Media™ (SM) (right). 

Image Credit: J. Schultz, C. Brackett, J. Nummy, O. Lapierre. 

 

The total volume of the sand/compost mixture within each cell is 1.13 m
3
 and was created 

onsite prior to field installation. The bulk density of the original bioretention 60:40 

sand/compost mix was 1.37 g cm
-3

, which is typical for a sand to sandy loam mixture (1.2 

g cm
-3

 – 1.7 g cm
-3

) (Brady and Weil 2008).  The two soil treatments in this research 

were conventional media (CM) and Sorbtive Media™ (SM) (Figure 19; see also section 

5.2.4.2 of this chapter). In the conventional media (CM) cell shown on the left in Figure 

19, the soil profile included 12 inches (0.3048 m) of locally sourced ‘bedding sand’ 

above 3 inches (0.0762 m) of pea gravel (size: 1/8 inch – 3/8 inch) and 9 inches (0.9906 

m) of washed stone, or gravel (size: 1.5 inch). In the Sorbtive Media™ (SM) cell (Figure 

19), the 12 inches of bedding sand in the CM cells are substituted with 9 inches (0.9906 

m) of bedding sand and 3 inches of Sorbtive Media™; above and below this 12-inch 

layer, the profiles of the SM and CM cells are identical.  

 Although groundwater recharge is often a goal in bioretention projects, in this 

research, the native subsurface soils contained non-homogeneous construction fill with a 
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thick clay layer underneath. Shallow depth to groundwater was also a concern; therefore, 

each cell is enveloped in a rubber liner.   

 Underground utilities (i.e., water, steam, electrical) were between two and four 

feet (0.61 m and 1.2 m) below ground-level, and affected the final placement of the cells 

within the narrow grassed areas parallel to the road. The distances from the curb cuts to 

the entrance of each bioretention cell are not equal. The areas of the conveyance strips 

(Figure 18) are listed in Table 27 in the Appendix. The ratio of surface area to drainage 

area across all cells is between 3% and 11%; the upper end of this range is higher than 

Debusk and Wynn (2011) but close to the typical recommended range of 5% to 7% (Hunt 

et al. 2006). The bioretention cells did not specifically include an IWS zone; however, the 

underdrain was approximately 2 inches (5.08 cm) higher than the bottom of the cells, 

which was a necessary to connect the underdrain to the outflow monitoring structure 

during construction. The porosity of gravel is typically between 25% and 40%, therefore 

between approximately 47 L and 76 L could be stored in the bottom of the cells between 

events (Chapter 3).  

5.2.4. Experimental Design and Overview of Treatments 

 To enable the monitoring of multiple treatments at once, with a small number of 

subjects, a semi-factorial paired watershed treatment design was selected. A plan view of 

the experimental design is shown in Figure 20, Table 16.   
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Figure 20, Table 16. Study design layout showing bioretention cells grouped by treatment.  

 

5.2.4.1. Vegetation Treatments, V1 and V2  

 Two planting designs were selected to compare pollutant retention. The plant 

species and layout are shown in Figure 21. The majority of the cells (1 through 6) were 

planted with vegetation palette 1 (V1), consisting of seven species, and contained fifteen 

plants per cell.  The remaining cells (7 & 8) were planted with vegetation palette 2 (V2), 

consisting of two species, and contained nine plants per cell. The planting layout was 

designed to achieve approximately equal percent cover when plants were fully grown. 

The two planting palettes were selected based on height, rooting habit, bloom time, color, 

diversity, pollen production, robustness to both drought and flood conditions, and salt 
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tolerance. The bioretention cells were planted in May 2013 and watered during the initial 

establishment phase for three weeks. 

 
Figure 21. Planting Configuration: Vegetation Palette 1 (Left) and Vegetation Palette 2 (Right) 

(Diagram created by S. Hurley and A. Zeitz, unpublished). 

 

 Water quality monitoring began in June of 2013. At the end of the first growing 

season, all of the vegetation, except the switchgrass, was cut back to heights between 1 

and 4 inches tall depending on species, to prevent the decomposition and re-release of 

nutrient and metals back into the system (Lantzke et al. 1998). Switchgrass plants in V2 

provided aesthetic value during winter, and were cut back prior to the start of the growing 

season in April of 2014. The vegetation palette with numerous species and variable root 

depths (V1) was predicted to remove more nutrients and sediment than the one with 

fewer species but deep roots (V2).  
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5.2.4.2. Soil Media Treatments, CM and SM 

 Two soil media designs were selected to compare pollutant retention via 

physical, chemical, and biological mechanisms (Hogan and Walbridge 2007). Each 

bioretention cell contained either a conventional soil media (CM) or a chemically-

engineered media called Sorbtive Media™ (SM). The sorbtive media product is produced 

by Contech Inc, and is defined as “an oxide-coated, high surface area, reactive engineered 

media that performs adsorption, surface complexation, and filtration of stormwater for 

total phosphorus removal” (Imbrium Systems 2012). Sorbtive media was incorporated 

into two of the eight cells (cells 3 and 4) on the research site, as a 3-inch thick layer, 21 

inches (53.34 cm) below the surface of the cell (Figure 19). For analytical purposes, 

results from replicate CM cells (2 and 6) were averaged and compared with SM cell 

4.The SM was expected to remove more labile P than the CM, due to its highly reactive 

oxide-coated surface.  

5.2.4.3. Precipitation Treatments, CM20 and SM60 

To evaluate the influence of increased precipitation on both CM and SM designs, 

additional precipitation and runoff were added to one cell within each of the CM and SM 

groups, by a specified amount (i.e., 20% or 60%), while the other cell was unaltered (i.e., 

ambient conditions). Precipitation was added with a simulation device called a rain pan 

(Figure 22). Runoff was effectively “added” by the fact that the size of the drainage area 

of the paired treatment was proportionately larger than the drainage area of the control (in 

other words, the drainage areas were 20% or 60% different for identically sized 

bioretention cells, depending on the treatment.  
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Figure 22. Rain pan on treatment SM60 with new vegetation. 

 

In the first precipitation treatment, cell 2 (CM) was paired with cell 1 (CM20). 

CM20 received approximately 20% more precipitation via an attached rain pan and has a 

drainage area that is approximately 20% larger than CM (Fig 19, Table 15), which added 

20% more runoff. In the second precipitation treatment, cell 4 (SM) was paired with cell 

3 (SM60). SM60 received approximately 60% more precipitation than cell 4, via an 

attached rain pan and has a drainage area that is approximately 60% larger than the SM 

cell, which added 60% more runoff (Fig 20, Table 16).  

The surface area of the rain pans were calculated by multiplying the difference in 

the size of the paired watersheds by the bioretention cell surface area (e.g., cells 3 & 4 are 

60.8 % different in size:  0.608 x 40ft
2
 = 24.32ft

2
 of rain pan surface area for the rain pan 

on cell 3; see also Figure 20). The two rain pans were constructed of corrugated clear, 

non-reactive acrylic roofing material.  

Precipitation was distributed across the cell surface via two  PVC pipes with a 2-

inch diameter (5.08 cm) which ran the length of the cell, and had 5/16-inch (0.79 cm) 

holes drilled on the underside. Additional precipitation and runoff was expected to 
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negatively influence nutrient and sediment retention and increase N2O and CH4 emissions 

due to the potential formation of anaerobic microsites within the soil profile.  

5.2.5. Monitoring Equipment  

 Inflow runoff was captured in a monitoring device, called a “weir box” prior to 

entering each of the eight bioretention cells.  Each weir box is equipped with a 90-degree 

v-notch weir and sized to allow stormwater to be sampled in small, sequential segments 

as it moved through the monitoring system. This maximized the detection of incremental 

changes in runoff quality throughout an event. The dimensions of the weir boxes were 

based on U.S. Bureau of Reclamation (2001) recommendations, and are described in 

detail in Chapter 3. The cells are equipped with an underdrain, which is connected to the 

storm drain network. A Thel-Mar™ compound weir was installed in a 6-inch diameter 

drainage pipe at the outflow of each bioretention cells (Figure 9, Chapter 3). Design 

details for the outflow monitoring equipment are described in Cording, (Chapter 3).  

 The height, or level, of the stormwater in both the inflow and outflow 

monitoring systems was measured with Teledyne™ 720 differential pressure transducers. 

Inflow level was converted to flow rate using discharge equations developed for each of 

the eight weirs. Outflow discharge equations for the in-pipe weirs were provided by Thel-

Mar, LLC. The pressure transducer is equipped with a venting system, which 

compensates for changes in atmospheric pressure and records level from 0.03 ft (0.9144 

cm) to 5.0 ft (1.524 m) (+/- 0.243 cm), and has an operating temperature between 32 
o
F 

and 120 
o
F. The inflow and outflow pressure transducers were clipped to the base of the 

inflow weir box and outflow monitoring chamber to ensure accurate measurements in 
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high flow events. The pressure transducers took continuous water level measurements 

throughout each storm event, in one minute intervals.  

5.2.6. Inflow and Outflow Sample Timing 

 Automated sample collection was conducted by the Teledyne ISCO™ 6700 

series, which can hold a maximum of twenty four 1-L bottles. The inflow and outflow 

sampling regimes were designed to capture samples at multiple locations throughout the 

inflow and outflow runoff hydrographs, and mass retention was compared on an equal 

volume basis. The number and timing of inflow samples targeting the inflow hydrograph 

and were based on estimates of peak flow rates for each road sub-watershed, which were 

determined using the time of concentration, rainfall intensity duration curves, and the 

rational method (Cording, Chapter 3; King et al. 2005).   

 For each storm and bioretention cell monitored, discrete samples were taken at 

the entrance of each cell every two minutes for up to 48 minutes (n = 24) when inflow 

flow rates were consistently above a minimum threshold of 0.21 ft (6.50 cm) from the 

bottom of the weir box. If the inflow flow rate dropped below the minimum threshold, 

sampling stopped, and resumed again if levels rose again, until all 24 bottles were filled. 

Outflow sampling was also time-based and targeted the outflow hydrograph based on the 

mean vertical and horizontal hydraulic conductivity of the cell (Chapter 3). For each 

storm and bioretention cell monitored, discrete outflow samples were taken every four 

minutes for up to 96 minutes (n = 24), when outflow flow rates were consistently above 

the minimum sampling threshold of 0.03 ft (0.91 cm) above the v-notch in the Thel-

Mar™ weir. If the outflow flow rate dropped below the minimum threshold, sampling 
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stopped, and resumed again if levels rose again, until all 24 bottles were filled. The total 

number of sample bottles collected and the total sampling time at both the inflow and 

outflow varied and depended on the nature of the storm. 

5.2.7. Water Quality Analysis 

 Each sample was analyzed for total phosphorus (TP), soluble reactive 

phosphorus (SRP), total nitrogen (TN), nitrate (NO3
-
), and total suspended solids (TSS). 

All stormwater samples were filtered with a Fisherbrand 0.45 μm nylon syringe filter 

prior to analyzing for dissolved inorganic nutrients according to standard methods 

(APHA 1992) and read by a Lachat™ automated colorimeter (Flow Injection Analysis, 

QuikChem 8000, Hach Company, Loveland, CO). Total phosphorus (TP) and total 

nitrogen (TN) concentrations were determined using potassium persulfate digestions on 

unfiltered samples. Potassium persulfate was prepared fresh for each digestion (APHA, 

1995). Quality control samples for both TN and TP were prepared using para-

Nitrophenylphosphate (para-NPP). A blank, standard and QC were included each time 

samples were run. SRP (dissolved ortho-phosphate) and TP (persulfate digested o-PO4
3

 
–
 

were analyzed using the Lachat QuickChem Method 10-115-01-1-Q. NO3
-
 and TN

 
were 

analyzed using the Lachat QuickChem Method 10-107-04-1-B.  TSS was measured 

according to standard methods (APHA 2011). 

 In order to investigate nutrient speciation in stormwater, TN and TP were 

mathematically separated into the approximate equivalent of total Kjeldahl nitrogen 

(TKN) and non-labile phosphorus (NLP), respectively. NLP was determined by 

subtracting the SRP from TP for each sample, and includes both the particulate and 
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dissolved fraction of organic P. Dissolved organic phosphorus is predominantly non-

labile, requiring bacterial decomposition (mineralization) to become ortho-phosphate 

(SRP), which is labile (Spivakov et al. 1999).  TN is defined as the sum of organic 

nitrogen, nitrate, nitrite, ammonia and ammonium. TKN is traditionally defined as the 

portion of nitrogen measured using the Kjeldahl method. It is a grouped measure, which 

includes NH3, NH4
+
 (labile, sometimes referred to as “free ammonia” or “ammonia”), 

and organic nitrogen (both labile and non-labile). The Kjeldahl method requires the use 

of toxic chemicals and poses hazardous disposal issues (Patton and Kryskalla 2003), 

therefore this research used an alternative method used by the Hach Company® for 

determining the equivalent portion of nitrogen to TKN in a sample, by using a persulfate 

digestion to determine total nitrogen, then subtracting the nitrate and nitrite components 

to determine TKN (Antonio and Walker 2011). 

5.2.8. Soil Analysis: SRP, Inorganic N, and Bulk Density 

 One of the goals of this study was to determine the nutrient load coming from 

the bioretention media itself, and how that load may have changed over time. A sample 

of the sand/compost mixture used in the top twelve inches of the bioretention cells was 

collected prior to being placed in the cells during construction in November 2012, and 

was analyzed for SRP, inorganic N, extractable metals, CEC, OM, and pH. Separately, 

after installation of the bioretention cells, three soil subsamples of the compost mixture 

were collected from the top 10 cm of each cell seven times from June 2013 to October 

2014 and analyzed as described above. Inorganic nitrogen and bulk density 

measurements were taken on a weekly to bi-weekly basis during season II (n = 13). Bulk 
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density was measured in December 2013 prior to snowfall and from May 2013 to 

September 2013 (n = 10) by calculating the total change in mass per volume of a 

cylindrical soil core container (g cm
-3

). To determine inorganic N and SRP content, soils 

were dried at 45°C, ground to pass a 2-mm sieve, and extracted with 2M KCl and 

Modified Morgan’s solution, respectively (Northeast Regional Coordinating Committee 

on Soil Testing 2009). Extracts were read by a Lachat™ automated colorimeter. Macro 

and micronutrients were analyzed using inductively coupled plasma spectroscopy (ICP-

OES). Organic matter content was determined using the loss on ignition method at 

375
o
C. The pH and effective CEC were determined by the University of Maine 

Analytical Laboratory using methods from the Northeast Regional Coordinating 

Committee on Soil Testing (2009). 

5.2.9. VWC, EC, and Temperature of Soil Media 

 Two Decagon 5TE probes measured volumetric water content (VWC), electric 

conductivity (EC), and temperature every five minutes, from July 2013 through October 

2014, at 5-cm and 61-cm depths in cell 1 (CM20), cell 2 (CM), and cells 7 & 8 (V2). The 

probe at the 61-cm depth in cell 2 (CM) had an equipment malfunction and did not 

produce useable data. The probe determines VWC, by measuring the dielectric constant 

of the media using frequency domain technology (Decagon Devices 2015). The sensor 

uses a 70-MHz frequency, which minimizes salinity and textural effects. VWC has an 

accuracy of +/- 1 (εa) from 1 to 40, +/- 15% from 40 to 80 VWC (Decagon Devices 

2015). The EC probe measures the combined electrical conductivity of the soil and water 

in a porous soil substrate with a stainless steel electrode array. EC is expressed as dS m
-1
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(equal to ms cm
-1

) and has a range from 0 to 23 dS m
-1

 and an accuracy of +/- 10% from 

0 to 7 dS m
-1

. Soil temperature was measured with a thermistor and had a range from -40 

to 60
o
C with an accuracy of +/- 1

 o
C (Decagon Devices 2015). 

5.2.10. Calculating Pollutant Mass and Concentration 

 The pollutant load was defined as the amount of mass (typically μg or mg) 

transported by a given volume of stormwater, in a given amount of time (U.S. 

Environmental Protection Agency 1997). Numeric integration was used to estimate the 

area under the flow rate and concentration functions over time (Davis and Cornwell 

1998; U.S. Environmental Protection Agency 1997). The accuracy of this method  

increases with the number of samples taken over time (Stenstrom and Kayhanian 2005).  

Rapid discrete samples were taken throughout the inflow and outflow hydrographs, 

typically up to 48 minutes and 96 minutes, respectively (see Section 5.2.6). The total 

mass load was determined using Equation 15.  

           ∫            
  

  

   (15) 

 

Where, 

C (t) is the concentration as a function of time (mg L
-1

) 

Q (t) is the flow rate as a function of time (L s
-1

) 

 

The Event Mean Concentration (EMC) is often used to represent the average 

stormwater concentration over the course of an event, and is defined as the total 

cumulative pollutant mass divided by the total cumulative volume generated during a 

storm event (Stenstrom and Kayhanian 2005). Volume and mass measurements used in 

the EMC are typically determined using flow-weighted composite sampling. Composite 
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sampling provides an adequate average representation of concentration (Stenstrom and 

Kayhanian 2005), but does not provide any temporal information regarding the 

distribution of mass during an event.  

 Alternatively, in the partial event mean concentration (PEMC), the average 

concentration can be calculated for any sampled portion of the hydrograph (Stenstrom 

and Kayhanian 2005), as shown in Equation 164, and was selected for use in this study.   

The limits of the numerical integration run from the initiation of runoff (0) to the time at 

which sampling stops (t) (Stenstrom and Kayhanian 2005). When the entire event is 

sampled, the PEMC and EMC are equal.  

 

 

 

 

 

      ∫
          

      

  

  

  
∑     
  
  

∑     
  
  

 (16) 

Where,  

t0 is the time at which the sample is collected in a storm event  

tn is the time the sampling has stopped  

c is the sample concentration as a function of time (mg L
-1

) 

q is the flow rate as a function of time (L
 
s

-1
) 

m is the pollutant mass delivered during a specific portion of the storm event (μg or mg) 

v is the volume delivered during a specific portion of the storm event (L) 

 

5.2.11. Evaluating Hydrologic Performance  

 Continuous water level measurements collected in one-minute increments 

throughout the entire storm duration were used to assess hydrologic performance. The 

maximum inflow and outflow flow rate and cumulative volumes (excluding any flood 

events) were compared in each cell, with replicates being averaged within each treatment. 

Flood events were defined as events within which flow rate measurements were over the 
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maximum measureable threshold for the inflow weirs (3.4 L s
-1

). Data from that event 

were not included in flow rate and cumulative volume reduction calculations. Outflow 

peak flow rates were well below the measurement threshold of 1.98 L s
-1

.  

5.2.12. Evaluating Pollutant Removal Within and Between Treatments 

 Because volume reduction is a dominant driver in pollutant retention, to isolate 

other potential pollutant removal mechanisms, mass loads were compared on an equal 

volume basis, comparing inflow to outflow (within a treatment) and comparing between 

treatments, as recommended by Geosyntec Consultants and Wright Water Engineers 

(2013). The stormwater volume that was compared for the inflow and outflow of cells 

and across all events was 120 liters. Lucas and Greenway (2008) used similar outflow 

volumes (98 L – 127 L) in bioretention column studies. The inflow and outflow samples 

within the 120-L volume were broken into six 20-L segments. Each 20-L increment 

contained the cumulative mass values from each storm event and each cell for both the 

inflow and the outflow. The total number of samples per 20-L segment are listed in Table 

33 in the Appendix.  

 The average of the inflow cumulative mass across all cells and storm events 

within each of the six 20-L segments was taken to represent the mass in stormwater 

delivered by that portion of volume, up to 120-L. The average of the outflow cumulative 

mass for each treatment was similarly used. The six inflow cumulative mass values 

across the total 120-L volume (e.g., 20-L, 40-L, 60-L, etc.) were then compared to the six 

outflow mass values, across the 120-L volume. The six outflow mass values across the 

120-L were also compared between treatments. The 120-L spanned the outflow 
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hydrograph, as shown in Figure 23. This method allowed for the comparison of inflow 

and outflow mass values within a treatment, and between treatments, which were not 

necessarily from the same storm event, but were equally weighted and related by volume. 

 

Figure 23. Example of sampling segments overlaid on the outflow flow rate hydrograph (left) and 

flow rate per cumulative volume (right) across 120-L 

  

 Simultaneous sampling within and between treatments was not always possible 

due to limited equipment. Percent mass removal from inflow to outflow was calculated 

using the average cumulative inflow and outflow mass loads from each of the six 

hydrograph segments. The average of the six incremental percent removal values is 

representative of the percent mass removal from the entire 120-L volume.  

5.2.13. Greenhouse Gas Sample Collection and Analysis Methods 

 Soil gas emissions were collected within each cell from fixed anchors, in 

homogeneous soil conditions (Corbella and Puigagut 2013), excluding vegetation, using 

the closed chamber method (Hutchinson and Livingston 1993; Kutzbach et al. 2007; 

Rochette et al. 1997). Anchor and chamber were constructed to specifications in Parkin 
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and Venterea (2010). Cells with Sorbtive Media™ contained two anchors; all others 

contained three anchors. Anchors were weeded a minimum of 24 hours prior to any 

sampling event. Disturbance was minimized in all other circumstances. Samples were 

collected weekly to bi-weekly, as practicable, from July to October 2014 (n = 11) to 

capture the gas flux during the majority of the growing season. Headspace gas samples 

(10 mL) within static chambers were taken at 0, 15, 30, and 45 minute intervals using 

syringes and injected into evacuated 10 mL vials. Soil temperatures were recorded in 

each of the cells at a depth of 15 cm. Humidity inside the chambers was minimized with 

short deployment times. Temporal and temperature variability was minimized by 

sampling at either 10 AM or 3 PM, and by using insulated PVC pipes and reflective 

mylar tape, as recommended by Parkin and Venterea (2010). Pressure disturbances were 

minimized by using a vent tube inside the chamber (Parkin and Venterea 2010).  

 Gas samples were analyzed within 24 hours for N2O, CH4, and CO2 

concentrations at the UVM Plant and Soil Science Department, on the Shimadzu GC-17A 

(Columbia, MD, USA) greenhouse gas analyzer with AOC-5000 autosampler. An 

electron capture detector (ECD) was used to measure N2O and a flame ionization detector 

(FID) was used to measure CH4 and CO2. Water vapor was removed from samples via a 

1.0-m Poropak- Q column and a 2.0-m Hayesep D column was used for sample 

separation, with nitrogen (N2) as the carrier gas. The gas chromatography (GC) oven, 

injection, and FID temperatures were maintained at 60°C, 150°C, and 250°C, 

respectively. 
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 As a precaution, samples from individual anchors were run in sequence (e.g., 

Anchor 1: t0, t15, t30, t45; Anchor 2: t0, t15, t30, t45) rather than segregating samples by time, 

to account for any GC drift, as recommended by Parkin and Venterea (2010). Flux rates 

were calculated with Equation 17.  

  

  
 

 
   
  

  
 

 

(17) 

Where, 

f = gas flux, expressed as a mass m
-2 

h
-1

 

V = the volume of the chamber, including the anchor or collar volume
 

A = the soil surface area covered by the chamber
 

  

  
 = the change in gas concentration over the sampling period 

 

 The gas flux equation assumes a linear increase in concentration in the chamber; 

therefore, the rate of change is the slope of the best-fit regression line of gas 

concentration over time. Each series of flux measurements was evaluated for linearity (p 

≤ 0.05) and points outside of the confidence boundary were discarded. Values showing a 

downward or upward drift at the end of the time step were discarded to avoid an under or 

over estimation of the total flux, as recommended by Rochette and Hutchinson (2005). 
 

5.2.14. Statistical Analysis  

 All statistical analysis was conducted with JMP Pro 11.2. Normality of 

distributions was evaluated using the Kolmogorow-Smirnov test. Where normality could 

not be met, non-parametric methods were used. Levene’s test was used to assess equality 

of variance. Where variances were not equal, a non-parametric version of the paired t-test 

(Wilcoxon signed rank) was used to compare differences between paired repeated 

measures data. Spearman’s rho is a non-parametric correlation method, and was used to 
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evaluate multivariate correlations due to its strength with data which may have a non-

linear characteristic, does not require normality, and is robust against the presence of 

outliers (Dytham 2003). A paired t-test was used to compare differences between paired 

data when normality was assumed. The average soil characteristics from seasons I and II 

(n = 7) were compared within each treatment to the original sand-compost mixture 

(collected pre-installation) using Dunnett’s control (Allen Burton and Pitt 2002). Linear 

regression coefficents were used to estimate the outflow mass load from each treatment 

as a function of cumulative volume. The probability level of p ≤ 0.05 was accepted as 

significant in all tests.  

 

5.3. Results  

5.3.1. Hydrologic Bioretention Performance 

 Paired t-test results indicate that the flow rate and runoff volume were 

significantly reduced from inflow to outflow in all bioretention treatments (Tables 17 - 

19). Reductions in peak flow rate ranged from 48% to 100% across all treatments. 

Volume reductions were ranged from 16% to 100%. Reductions inversely correlated with 

the size of the storm event: Spearman’s rho results indicate that as the size of the 

precipitation event (n = 50) increased, there was a decrease in percent volume reduction 

(rs = -0.3206, p = 0.0232) and peak flow rate reduction (rs= -0.3870, p = 0.0055).     
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Table 17. Inflow and outflow peak flow rate by treatment, where n is the number of storm events. 

Treatment n 

Inflow Flow Rate Outflow Flow Rate Peak Flow Rate Reduction 

L s
-1 

L s
-1

 % 

Min Mean ± Max Min Mean ± Max Min Mean ± Max 

V1/CM (cells 2 & 6) 14 0.014 0.984 0.882 3.337 2.14E-06 0.049 0.055 0.154 71.1 94.2 7.6 100.0 

V2 16 0.002 0.642 0.865 3.541 1.26 E-05 0.044 0.069 0.258 47.7 90.3 13.6 100.0 

CM (cell 2 only) 1 1.040 - - 1.040 2.14E-06 - - 2.14E-06 100.0 100.0 - 100.0 

CM20 7 0.069 0.460 0.509 1.436 0.001 0.059 0.064 0.190 56.8 80.9 16.2 99.5 

SM 3 0.131 0.669 0.788 1.573 0.017 0.063 0.071 0.144 52.6 77.1 23.3 98.9 

SM60 6 0.023 0.765 0.667 1.597 7.36 E-5 0.049 0.059 0.144 89.9 95.5 3.8 99.7 

 
Table 18. Inflow and outflow cumulative volume reduction by treatment, where n is the number of storm events. 

Treatment n 

Inflow Cumulative Volume Outflow Cumulative Volume Volume Reduction 

L L % 

Min Mean ± Max Min Mean ± Max Min Mean ± Max 

V1/CM (cells 2 & 6) 14 59 1050 1069 3582 - 199 259 779 70.0 86.3 12.2 100.0 

V2 16 6 729 849 2611 0.02 138 170 546 31.5 79.7 24.7 99.6 

CM (cell 2 only) 1 63 - - 63 0.0001 0.00 - - 100.0 100.0 - 100.0 

CM20 7 49 450 297 907 0.71 161 140 345 41.6 70.8 19.1 98.5 

SM 3 29 185 173 370 1.96 22 23 47 39.1 69.5 30.2 99.5 

SM60 6 6 343 333 902 0.33 80 106 266 16.1 78.0 31.1 99.0 

 

Table 19. Comparing inflow and outflow flow rate (Q) and cumulative volume (Vol) with a paired t-test, where n is the number of storm events. 

Treatment Inflow Outflow n df Mean Diff Standard Error t-ratio p-value (one-sided) 

V1/CM (cells 2 & 6) Q Q 14 13 0.9352 0.2333 4.01 0.0007 

Vol Vol 14 13 851.43 230.44 3.69 0.0013 

V2 Q Q 16 15 0.5984 0.0202 2.96 0.0048 

Vol Vol 16 15 590.93 196.64 3.01 0.0044 

CM20 Q Q 7 6 0.4004 0.1727 2.32 0.0298 

Vol Vol 7 6 289.25 70.77 4.09 0.0032 

SM60 Q Q 6 5 0.7160 0.2519 2.84 0.0181 

Vol Vol 6 5 263.10 122.31 2.15 0.0421 
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 The vertical hydraulic conductivity (Kz) of the CM cells was estimated to be 

131.04 cm hr
-1

 (51.59 in hr
-1

), based on the individual conductivities of each bioretention 

media layer (Chapter 3). The hydraulic conductivity of the Sorbtive Media™ is   73.15 

cm hr
-1

 (28.80 in hr
-1

) (Imbrium Systems, personal communication, December 13, 2015), 

resulting in a Kz of approximately 118.44 cm hr
-1

 (46.63 in hr
-1

) in the SM cells.  

5.3.2. Inflow to Outflow: Pollutant Removal within Each Treatment 

 The average NLP, SRP, TKN and NO3
-
 mass loads from each 20-L increment of 

inflow and outflow stormwater volume up to 120 liters are shown in Figure 24. The 

inflow mass is normalized by watershed area and includes data from the eight 

bioretention cells.  

 
Figure 24. Average inflow and outflow cumulative mass per cumulative volume by treatment (120-L). 

CM contains data from cell 2 only. 

 

 

Paired t-test results (Table 20) comparing inflow to outflow mass across the 120-L 

volume indicate that the NLP mass was significantly reduced, from inflow to outflow in 

all treatments. The percent NLP mass removal (Table 20) ranged from 42% (CM, cell 2 
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only) to 74% (V2).  The SRP mass load was significantly increased from inflow to 

outflow in all treatments, except those containing Sorbtive Media (i.e., SM and SM60).  

The percent SRP mass removal ranged from -1,180% (CM, cell 2 only) to 94% (SM60).  

The TKN mass was also significantly reduced, from inflow to outflow, in all treatments. 

The percent TKN mass removal ranged from 59% (V1 and SM) and 78% (V2). The 

outflow nitrate mass load from V1 was significantly higher than the inflow (-52%). 

Nitrate significantly decreased from inflow to outflow in V2 (19%) and CM20 (91%). 

There was no significant difference between nitrate mass from inflow to outflow in CM 

(cell 2 only), SM or SM60. The TSS mass (not shown) was found to be significantly 

reduced from inflow to outflow in all treatments. The percent TSS mass reduction ranged 

from 66% (CM, cell 2 only) to 93% (CM20). The outflow cumulative mass from each 

treatment was found increase with cumulative volume, and was well predicted by linear 

regression, as shown in Table 21. 
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Table 20. Paired t-test comparing inflow and outflow mass on an equal volume basis (120 L), where n 

= 6 (df = 5) and percent mass removal and standard deviation (±) also shown.  

Group Mass Level - Level Score 

Mean 

Diff 

Std 

Err 

Dif 

t-

ratio 

One 

sided 

p-value 

Percent 

Removal 

(%) 

± 

V1  TP In Out 
-

30,753 
9,728 -3.16 0.0125* -285.0 1.74 

 NLP In Out 5,266 1,761 2.99 0.0152* 51.8 0.195 

 SRP In Out 
-

35,807 
10,743 -3.33 0.0104* -868.8 3.56 

 TN In Out 26,214 11,513 2.28 0.0359* 21.8 0.326 

 TKN In Out 35,474 12,724 2.79 0.0193* 58.5 0.228 

 NO3 In Out -9,820 2,939 -3.34 0.0103* -52.0 0.529 

 TSS In Out 3,420 1,043 3.28 0.0110* 78.5 0.088 

V2 TP In Out -9,517 3,793 -2.51 0.0269* -83.2 0.416 

 NLP In Out 6,931 2,188 3.17 0.0124* 73.7 0.087 

 SRP In Out 
-

16,109 
5,379 -2.99 0.0151* -359.7 0.731 

 TN In Out 46,373 14,688 3.16 0.0126* 57.7 0.126 

 TKN In Out 40,701 13,091 3.11 0.0133* 77.5 0.063 

 NO3 In Out 6,552 2,438 2.69 0.0217* 19.3 0.185 

 TSS In Out 3,727 1,056 3.53 0.0084* 89.3 0.0186 

CM  TP In Out 
-

43,602 
14,216 3.07 0.0139* -404.7 2.490 

 NLP In Out 4,800 1,761 2.73 0.0207* 42.3 0.288 

 SRP In Out -4,888 48,462 -3.22 0.0118* -1,179.7 5.117 

 TN In Out 36,251 11,687 3.10 0.0134* 43.0 0.2089 

 TKN In Out 41,220 13,740 3.00 0.0150* 72.5 0.199 

 NO3 In Out -5,266 4,398 1.20 0.8576 -20.8 0.4250 

 TSS In Out 2,994 984 3.04 0.0143* 65.8 0.1505 

CM20 TP In Out -2,879 1,290 -2.23 0.0380* -65.2 0.8151 

 NLP In Out 7,359 2,481 2.97 0.0157* 73.2 0.1614 

 SRP In Out -9,750 1,291 -7.55 0.0003* -308.0 1.75 

 TN In Out 59,146 18,282 3.24 0.0115* 77.3 0.070 

 TKN In Out 38,203 13,049 2.93 0.0164* 69.3 0.122 

 NO3 In Out 22,531 6,054 3.72 0.0068* 91.3 0.0082 

 TSS In Out 3,939 1,135 3.47 0.0089* 93.3 0.0320 

SM TP In Out 10,720 3,685 2.91 0.0167* 71.8 0.147 

 NLP In Out 7,368 2,579 2.86 0.0178* 71.2 0.187 

 SRP In Out 3,578 1,399 2.56 0.0254* 65.7 0.109 

 TN In Out 39,633 15,646 2.53 0.0262* 39.8 0.262 

 TKN In Out 35,002 12,250 2.86 0.0178* 59.2 0.221 

 NO3 In Out 4,339 3,325 1.30 0.1244 2.7 0.284 

 TSS In Out 3,867 1,106 3.50 0.0087* 91.0 0.0477 

SM60 TP In Out 9,791 3,284 2.98 0.0154* 68.8 0.082 

 NLP In Out 5,586 1,970 2.84 0.0182* 55.0 0.136 

 SRP In Out 4,650 1,601 2.90 0.0168* 93.8 0.020 

 TN In Out 29,845 11,404 2.62 0.0236* 31.8 0.164 

 TKN In Out 32,074 10,783 2.99 0.0153* 60.8 0.0567 

 NO3 In Out -524 1,530 0.343 0.6271 -17.3 0.3056 

 TSS In Out 3,662 1,082 3.39 0.0098* 84.3 0.074 
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Table 21. Linear regression of the cumulative outflow mass with cumulative volume to 120 L (n=6). 

Units of mass are in μg, except TSS (mg). CM is cell 2 only. 

Treatment Parameter Linear Fit R
2
 Regression 

Coefficient 

Standard 

Error 

T Ratio Prob > |t| 

V1 TP -11,724 + 798X 0.83 798 183 4.36 0.0120 

 NLP -1,148 + 70X 0.88 70 13 5.53 0.0052 

 SRP -10,631 + 733X 0.82 733 169 4.33 0.0124 

 TN 1629 + 646X 0.90 646 106 6.12 0.0036 

 TKN 2974 + 167X 0.89 167 29 5.78 0.0044 

 NO3
-
 -2380 + 526X 0.91 526 86 6.30 0.0032 

 TSS 123 + 8.70X 0.89 8.70 1.5 5.78 0.0044 

V2 TP -9,488 + 463X 0.87 463 85 5.17 0.0066 

 NLP -630 + 39X 0.91 39 6 6.31 0.0032 

 SRP -8,976 + 428X 0.87 428 83 5.15 0.0068 

 TN -2,030 + 411X 0.94 411 50 8.16 0.0012 

 TKN -633 + 144X 0.98 144 9.9 14.50 0.0001 

 NO3
-
 -1,327 + 277X 0.93 277 39 7.10 0.0021 

 TSS -107 + 7.62 0.98 7.62 0.58 13.15 0.0002 

CM TP -14,909 + 1,027X 0.78 1,027 275 3.74 0.0202 

 NLP -1,010 + 74X 0.80 74 19 4.00 0.0161 

 SRP -14,010 + 962X 0.78 962 254 3.78 0.0194 

 TN -8,759 + 651X 0.79 651 169 3.86 0.0181 

 TKN 2,126 + 97X 0.68 97 33 2.91 0.0435 

 NO3
-
 -10,084 + 571X 0.82 571 133 4.31 0.0126 

 TSS 249 + 12.98X 0.82 12.98 3.03 4.30 0.0127 

CM20 TP 2,113 + 202X 0.97 202 17 11.67 0.0003 

 NLP 298 + 19X 0.95 19 2 9.14 0.0008 

 SRP 1,815 + 183X 0.97 183 15 12.02 0.0003 

 TN 1,132 + 183X 0.99 183 7 24.71 <0.0001 

 TKN 1,392 + 151X 0.99 151 6 25.22 <0.0001 

 NO3
-
 -291 + 34X 0.97 34 3 11.95 0.0003 

 TSS 39 + 2.48X 0.98 2.48 0.19 13.36 0.0002 

SM TP 688 + 28X 0.95 28 3 8.51 0.0010 

 NLP 742 + 13X 0.84 13 3 4.60 0.0100 

 SRP 50 + 18X 0.99 18 1 16.99 <0.0001 

 TN 8,431 + 357X 0.98 357 25 14.37 0.0001 

 TKN 1,373 + 197X 0.95 197 21 9.19 0.0008 

 NO3
-
 4,587 + 224X 0.96 224 24 9.33 0.0007 

 TSS -11.53 + 4.24X 0.86 4.24 0.87 4.88 0.0081 

SM60 TP -284 + 56X 0.99 56 3 19.43 <0.0001 

 NLP -337 + 54X 0.99 54 3 21.38 <0.0001 

 SRP -7.13 + 3.51X 0.99 3.51 0.19 18.47 <0.0001 

 TN -1,177 + 635X 1.00 635 22 28.50 <0.0001 

 TKN -3,122 + 303X 0.99 303 13 23.73 <0.0001 

 NO3
-
 1,944 + 332X 0.99 332 16 21.01 <0.0001 

 TSS 78.8 + 5.82X 0.99 5.82 0.24 24.63 <0.0001 
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5.3.3. Comparing Cumulative Outflow Mass Loads between Treatments 

 Paired t-test results comparing outflow mass between treatments (Table 22, 

Figure 25) indicate that the outflow mass from V2 was significantly lower than V1 for all 

constituents. The outflow mass from SM was significantly lower than CM for all 

constituents, except TKN and NLP, which were not statistically different between 

treatments. Outflow mass from CM20 was significantly lower than CM for all 

constituents except TKN. Outflow SRP mass from SM60 was significantly lower than 

SM. NLP and TSS mass from SM60 were significantly higher than SM.  

Table 22. Cumulative outflow mass compared between treatments using a paired t-test. When CM 

and SM are compared, CM contains averaged data from replicate cells 2 &6. When CM is compared 

with CM20, CM contains data from cell 2 only. 

Parameter Level - Level df Mean Diff Std Err t Prob > |t| 
Lower 

CL 

Upper 

CL 

TP 

V2 V1 5 -21,236 6,037 -3.50 0.0170 -36,753 -5,718 

CM SM 5 41,473 13,046 3.18 0.0246 7,938 75,009 

CM20 CM 5 -40,723 14,880 -2.74 0.0410 -78,974 -2,472 

SM60 SM 5 929 419 2.22 NS -148 2,007 

NLP 

V2 V1 5 -1,665 518 -3.22 0.0236 -2,996 -334 

CM SM 5 2,102 973 2.16 NS -400 4,604 

CM20 CM 5 -2,559 985 -2.60 0.0484 -5,091 -27 

SM60 SM 5 1,782 629 2.83 0.0365 166 3,397 

SRP 

V2 V1 5 -19,697 5,534 -3.56 0.0162 -33,923 -5,471 

CM SM 5 39,384 12,101 3.25 0.0226 8,277 70,492 

CM20 CM 5 -38,714 13,987 -2.77 0.0395 -74,668 -2,760 

SM60 SM 5 -1,072 224 -4.79 0.0049 -1,647 -496 

TN 

V2 V1 5 -20,159 4,383 -4.60 0.0058 -31,426 -8,893 

CM SM 5 13,420 5,771 2.33 NS -1,415 28,254 

CM20 CM 5 -22,894 8,942 -2.56 NS  -45,881 92 

SM60 SM 5 9,789 4,332 2.26 NS -1,347 20,924 

TKN 

V2 V1 5 -5,228 799 -6.54 0.0013 -7,283 -3,173 

CM SM 5 -472 1,324 -0.36 NS -3,874 2,931 

CM20 CM 5 3,017 1,433 2.10 NS -668 6,701 

SM60 SM 5 2,928 1,794 1.63 NS -1,684 7,539 

NO3
-
 

V2 V1 5 -16,372 4,292 -3.81 0.0124 -27,405 -5,338 

CM SM 5 14,159 5,455 2.60 0.0485 138 28,180 

CM20 CM 5 -27,796 9,179 -3.03 0.0291 -51,391 -4,202 

SM60 SM 5 4,864 1,952 2.49 NS -153 9,880 

TSS 

V2 V1 5 -307 57 -5.40 0.0029 -453 -161 

CM SM 5 447 98 4.56 0.0061 195 699 

CM20 CM 5 -945 183 -5.15 0.0036 -1,417 -474 

SM60 SM 5 201 36 5.60 0.0025 109 292 
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a 

 

b 

 

c 

 

d 

 
Figure 25 a, b, c, and d. Percent mass removal by treatment on an equal volume basis to 120-L (n = 

6). Each error bar is 1 standard deviation from the mean. Asterisks signify a significant difference in 

outflow mass between treatment pairs, with ns = p > 0.05, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, 

**** = p ≤ 0.0001.   
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SRP export was greatest in the V1 treatment (-869%) (Figure 25). SM and SM60 reduced 

SRP mass loads by 66% and 94%, respectively. NLP and TKN removals were highest in 

V2, at 74% and 78%, respectively. TSS removal was highest in SM (91%). 

5.3.4. Bioretention Sand and Compost Mixture: Pre and Post-Installation  

 Soil samples collected from the top 10 cm of each bioretention profile, from 

June 2013 to October 2014 (n = 7) (post-installation), were compared to the samples of 

the original (pre-installation) sand/compost mixture using Dunnett’s control. SRP, NO3
-
, 

and NH4
+
 contents significantly decreased from the pre-installation soil media in all 

treatments (Figure 26). 

 

Figure 26. Comparing the soil extractable NH4
+
, NO3

-
, and SRP contents from the original pre-

installation bioretention soil mix (60% sand, 40% compost) to the average after two years of 

installation (n = 7) using Dunnett’s control. Each error bar is constructed using 1 standard deviation 

from the mean. CM is showing data from cell 2 only. Asterisks signify a significant decrease from the 

original soil media, with ns = p > 0.05, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, **** = p ≤ 0.0001. 

 

There was no significant decrease in the bulk density, CEC, or organic matter content 

from pre to post-installation in any of the treatments (Tables 23 a, b, and c). K, Mg, and 

pH significantly decreased from pre to post-installation in all treatments. Soil sodium 

content significantly decreased in the SM and SM60 treatments. Mn significantly 

decreased in all treatments except SM. Sulfur content significantly decreased only in 

SM60. 
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Table 23 a, b, and c. Average characteristics of the top 10 cm of the 60:40 sand and compost mixture from June 2013 to October 2014, 

compared to the original pre-installation media using Dunnett’s control (d) (α = 0.05). No significant differences were found in table c.  

Treatment Soil Test P 

(orthophosphate)  

NO3
- 

NH4
+
 pH Bulk Density 

mg kg
-1

 mg kg
-1

 mg kg
-1

 -log [H
+
] g cm

-3
 

n Mean ± |d| n Mean ± |d| n Mean ± |d| n Mean ± |d| n Mean ± 

Original 1 190 - 2.38 1 94.75 - 2.30 1 2.86 - 2.24 1 8.40 - 2.38 1 1.37 
- 

V1 7 55 23 <.0001 13 5.25 2.31 <0001 13 0.89 0.23 0.0041 7 7.04 0.10 <0001 10 1.34 0.09 

V2 7 65 44 <.0001 13 7.83 4.59 <0001 13 1.23 0.45 0.0179 7 6.85 0.23 <0001 10 1.30 0.09 

CM 7 74 38 0.0298 13 6.65 3.52 <0001 13 0.88 0.43 0.0008 7 7.16 0.16 0.0004 10 1.35 0.07 

CM20 7 37 11 <.0001 13 4.43 1.89 <0001 13 1.21 0.58 0.0176 7 6.88 0.13 <0001 10 1.34 0.09 

SM 7 24 4 <0001 13 5.03 3.05 <0001 13 1.16 0.45 0.0146 7 7.05 0.15 <0001 10 1.27 0.15 

SM60 7 29 10 <0001 13 3.63 1.75 <0001 13 1.26 0.94 0.0219 7 6.98 0.20 <0001 10 1.44 0.10 

 

Treatment n 

K Mg S Mn Na 

mg kg
-1

 mg kg
-1

 mg kg
-1

 mg kg
-1

 mg kg
-1

 

Mean ± |d| Mean ± |d| Mean ± |d| Mean ± |d| Mean ± |d| 

Original 1 286 - 2.43 237 - 2.43 23.00 - 2.43 11.10 - 2.43 148 - - 

V1 7 29 11 <0001 73 16 <0001 15.57 3.01 NS 6.15 0.915 0.0134 76 76 NS 

V2 7 37 13 <0001 75 26 <0001 15.57 4.77 NS 6.57 1.26 0.0242 56 46 NS 

CM 7 35 19 <0001 89 28 0.0027 18.00 5.29 NS 6.31 1.31 0.0141 85 68 NS 

CM20 7 30 10 <0001 71 21 <0001 12.57 5.29 NS 7.09 1.49 0.0481 41 29 NS 

SM 7 29 11 <0001 79 18 <0001 11.86 4.49 NS 8.40 1.98 NS 33 24 NS 

SM60 7 27 12 <0001 62 16 <0001 7.71 2.36 0.0378 6.57 1.82 0.0242 28 32 0.0457 
 

Treatment n 

Ca Al Fe Zn Cu CEC Organic Matter 

mg kg
-1

 mg kg
-1

 mg kg
-1

 mg kg
-1

 mg kg
-1

 cmolc kg
-1

 % 

Mean ± Mean ± Mean ± Mean ± Mean ± Mean ± Mean ± 

Original 1 711 - 9.00 - 2.70 - 1.10 - 0.20 - 6.30 -
 

1.10 -
 

V1 7 978 117 8.14 2.00 2.70 0.49 2.80 0.99 0.61 1.05 5.58 0.67 1.52 0.39 

V2 7 985 162 8.36 0.556 2.71 0.65 2.94 1.68 0.96 2.06 5.66 1.01 1.79 0.64 

CM 7 1,086 205 7.43 2.64 2.87 0.79 2.61 0.855 0.48 0.65 6.27 1.22 1.56 0.44 

CM20 7 811 124 8.00 1.83 2.80 1.18 2.54 0.67 0.39 0.34 4.71 0.74 1.32 0.36 

SM 7 873 146 6.29 1.70 3.10 0.72 3.41 1.27 0.33 0.37 5.11 0.90 1.39 0.42 

SM60 7 702 153 7.29 1.11 3.06 1.53 3.13 1.91 0.61 1.08 4.11 0.92 1.18 0.26 
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5.3.5. Bioretention Sand and Compost Mixture: Differences between Treatments 

 The sand/compost mixture was tested in each cell over two years and compared 

between treatments. Paired t-test results indicate that V1 had significantly lower 

extractable soil NO3
-
 (t (12) = -2.60, p = 0.0117) and NH4

+
 (t (12) = -3.13, p = 0.0043) 

than V2. Soil SRP was also lower in V1 than V2, but the difference was not significant. 

The soil pH in V1 was significantly lower than V2 (t (6) = -2.03, p = 0.0446). All other 

soil parameters were found to be equal between the two treatments.  

 Soils in the CM treatment were found to have significantly higher SRP (t (6) = 

3.29, p = 0.0083), Al (t (6) = 4.97), Ca (t (6) = 3.09, p = 0.0107) and B (t (6) = 2.40, p = 

0.0266) than in the SM treatment. CM also had significantly higher CEC (t (6) = 2.47, p 

= 0.0013), OM (t (6) = 2.13, p = 0.0387) and bulk density (t (9) = 2.17, p = 0.0290), than 

the SM. Conversely, the CM had significantly lower Zn (t (6) = -2.88, p = 0.0141), Mn (t 

(6) = -4.29, p = 0.0026), and Fe (t (6) = -2.08, p = 0.0416) than SM. NH4
+
 was also lower 

in CM than SM (t (12) = -1.79, p = 0.0493); however, soil nitrate not significantly 

different between the two treatments.  

 CM20 soils had significantly lower soil SRP (t (6) = -3.40, p = 0.0073) and NO3
-
 

(t (6) = -3.05, p = 0.0050) than CM; however, NH4
+
 was not significantly different 

between the two treatments. CM20 had significantly lower Ca (t (6) = -4.61, p = 0.0018), 

Mg (t (6) = -2.46, p = 0.0247), B (t (6) = -2.27, p = 0.0317) and Na (t (6) = -2.31, p = 

0.0302) than CM. This likely contributed to a lower CEC (t (6) = -4.42, p = 0.0020) and 

pH (t (6) = -4.52, p = 0.0020) in CM20 than CM.  

 The soil SRP, NO3
-
, and NH4

+
 constituents were not significantly different 

between SM and SM60. SM60 had less soil Ca (t (6) = -2.09, p = 0.0406), Al (t (6) = -
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2.04, p = 0.0432), Mg (t (6) = -2.30, p = 0.0370), Mn (t (6) = -2.99, p = 0.0121) and S (t 

(6) = -2.46, p = 0.0245) than the SM treatment. This likely contributed to a lower CEC in 

SM60 (t (6) = -2.10, p = 0.0400). Bulk density was found to be higher in the SM60 

treatment (t (9) = 3.65, p = 0.0027).  

5.3.6. Mass Balance: SRP and NO3
-
  

The original sand/compost mixture was found to contain more soil test P and 

NO3
-
 than could be removed from the media via plant uptake, resulting in a net export of 

labile nutrients in some cases. Upon installation, there was approximately 1,552 kg of 

60:40 sand and compost mixture in each of the bioretention cells. A volume of 1.13 m
3
of 

the sand-compost mixture contained an average of 294,880 mg of soil test P, 147,052 mg 

of NO3
-
, and 4,439 mg of NH4

+
 prior to any precipitation events. Approximately 69 

inches (1.75 m) of rainfall fell on the site during the study period (NOAA, National 

Weather Service Forecast).  Looking again at the sand-compost media two-years post 

installation, the average soil test P content (n = 7) in the sand/compost mixture decreased 

by between 66% (201 g) and 87% (257 g) across all treatments. NO3
-
 decreased between 

92% (135 g) and 96% (141 g). NH4
+
 decreased between 56% (2.49 g) and 69% (3.06 g).  

Stormwater from the drainage area was found to contribute only 1% and 2% of 

the total SRP load to the outflow across all the cells, with the remainder coming from the 

sand/compost mixture. NO3
-
 mass load from stormwater contributed between 9% and 

22% of the total load, with larger loads coming from the larger watersheds, as a result of 

larger runoff volumes (Chapter 4). Cumulative outflow mass from each treatment was 

well predicted by cumulative volume, as shown in Table 21.  
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Of the total SRP and NO3
-
 mass loads released from the combination of compost 

and incoming stormwater, approximately 70% was found to be removed by vegetation in 

V1 and 30% was released in the outflow effluent. Vegetation in V2 was found to remove 

approximately 80% of the SRP and NO3
-
 from the compost and incoming stormwater, 

releasing 20% to the outflow. SRP uptake by plants was approximately 97 mg kg
-1

 in V1 

and 103 mg kg
-1

 in V2. NO3
-
 uptake was approximately 70 mg kg

-1
 in V1 and 81 mg kg

-1
 

in V2.  

 The CM20 treatment was found to remove approximately 144 mg kg
-1

 of SRP 

and 97 mg kg
-1

 of NO3
-
 during the two year period after the bioretention cells were 

installed. Nitrate removal from the stormwater and sand/compost mixture was 

approximately 98%, with approximately 43 g of nitrate removed, possibly via 

denitrification.  

Sorbtive Media™ has a bulk density of approximately 0.72 g cm
-3

. The SM and 

SM60 cells each contained approximately 204 kg of the material. The total SRP removal 

from the SM and SM60 cells during the two year period following installation was found 

to be 164 mg kg
-1

 and 160 mg kg
-1

, respectively. Nitrate removal from the SM and SM60 

cells was approximately 84 mg kg
-1

 and 53 mg kg
-1

, respectively. The total SRP removal 

can be broken out into plant uptake, and sorption of SRP; and total NO3
-
 removal is 

associated with plant uptake and enhanced NO3
-
 removal, where the removal mechanism 

is still unknown. Notably, both SM treatments were planted with the same species mix in 

V1. If the plant uptake rates from V1 are applied to the SM and SM60 treatments, the 

media alone can be predicted to have removed approximately 104,573 mg of SRP in SM 

and 98,389 mg in SM60 during the study period. If the V1 plant uptake rates are applied, 
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110 mg of NO3
-
 were removed per kg of Sorbtive Media™ in SM. In SM60, NO3

-
 

removal was approximately 126 mg kg
-1

.  

5.3.7. Outflow Partial Event Mean Concentrations 

 Average partial event mean concentration (PEMC) of the inflow and the outflow 

during the first two seasons of monitoring (2013 to 2014) can be found in Table 24.  

Table 24 a and b. Average inflow and outflow partial event mean concentration by treatment, where 

n is equal to the number of storm events. All parameters are in units of μg L
-1

 except TSS (mg L
-1

). 

CM contains cell 2 only. 

PEMC for inflow and vegetation treatments 

Parameter n Inflow ± n V1 ± n V2 ± 

TP 35 104 73 10 590 455 9 474 606 

NLP 35 67 54 10 45 32 9 36 39 

SRP 35 38 43 10 546 429 9 438 568 

TN 35 570 361 10 888 666 9 748 805 

TKN 35 380 268 10 356 228 9 270 287 

NO3 35 196 166 10 547 535 9 499 553 

TSS 34 23 24 10 6.0 4.05 9 6.13 6.18 

 

PEMC for soil media and precipitation treatments 

Parameter n CM ± n CM20 ± n SM ± n SM60 ± 

TP 4 618 461 4 183 127 4 73 55 5 53 29 

NLP 4 53 36 4 18 11 4 49 48 5 49 29 

SRP 4 568 431 4 164 116 4 24 6 5 4 3 

TN 4 546 302 4 192 22 4 819 536 5 751 356 

TKN 4 257 292 4 149 15 4 376 329 5 287 147 

NO3 4 291 237 4 44 15 4 463 208 5 464 274 

TSS 4 10.20 1.76 4 3.03 0.42 4 5.26 4.79 5 5.34 2.34 

 

5.3.8. Soil Greenhouse Gas Emissions 

 Soil gas fluxes (CO2, N2O, and CH4) were measured during season II (July 2014 

to October 2014) in each of the cells (Figure 27). The minimum, mean and maximum soil 

gas flux from each treatment across the 11 sample events are provided in Table 25. 
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Figure 27. CO2, N2O, and CH4 emissions by treatment, from June 2014 to October 2014 (n = 11, n is 

equal to the number of sample events). 

 

Table 25. Summary statistics for CO2, N2O, and CH4 emissions by treatment (n = 11, where n is equal 

to the number of sample events). 

 
CO2 N2O  CH4   

 mg m2 hr-1 μg m2 hr-1 μg m2 hr-1 

Treatment Min Mean ± Max Min Mean ± Max Min Mean ± Max 

V1 337 768 300 1,286 -10.03 3.70 9.22 22.57 -0.0423 -0.0079 0.0306 0.0601 

V2 261 797 383 1,768 -17.25 3.11 14.04 38.62 -0.0640 -0.0171 0.0297 0.0377 

CM 326 778 330 1,482 -25.69 4.98 19.54 35.28 -0.0545 -0.0046 0.0480 0.1009 

CM20 313 979 524 2,137 -33.94 6.90 20.54 39.09 -0.0047 0.06080 0.0408 0.1259 

SM 266 638 387 1,250 -20.16 -3.06 10.97 10.69 -0.0746 -3 x 10-5 0.0493 0.0876 

SM60 335 850 419 1,584 -24.55 1.30 15.01 18.63 -0.0753 -0.0125 0.0384 0.0449 

 

5.3.9.1. Carbon Dioxide (CO2)
 

 There were no other significant differences in the CO2 emissions between 

treatment pairs. The CO2 emissions across all cells and events  (n = 77)  were variable, 

ranging from a minimum of 251 mg m
-2

 hr
-1

 to a maximum of 2,650 mg m
-2

 hr
-1

. CO2 

positively correlated with soil temperature (rs = 0.2545, p = 0.0255), and negatively 

correlated with antecedent precipitation conditions (rs = -0.5333, p<0.0001) and water 

filled pore space (rs= -0.5400, p=0.0065). . CO2 was found to be higher in SM60 than SM 

(t (10) = 4.17, p = 0.0019).  
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5.3.9.2. Nitrous Oxide (N2O) 

 The bioretention soil media was found to be a small source for N2O in all 

treatments except SM, which was found to be a small sink, however there were no 

statistically significant differences in N2O emissions between treatments. N2O ranged 

from -33.94 μg m
-2

 hr
-1

 to 65.8μg m
-2 

h
-1

 across all samples (n = 77).  The average N2O 

emissions by treatment ranged from 1.3 μg m
-2 

h
-1

to 6.9 μg m
-2 

h
-1

 with peaks between 

10.69 μg m
-2 

h
-1 

and 39.09 μg m
-2 

h
-1

. CM20 had the highest maximum N2O peak. The 

average N2O emission from CM20 was higher than CM, but the difference was not 

statistically significant. N2O was found to positively correlate with average daily air 

temperature (rs = 0.7062, p = 0.0152) and Al (rs = 0.7364, p = 0.0152), and negatively 

correlate with NH4
+
 (rs = -0.3037, p = 0.0425) and Mg (rs = -0.7295, p = 0.0166).  

5.3.9.3. Methane (CH4) 

 The bioretention soil was found to be a small sink for CH4
 
on average for all 

treatments (n = 11), except CM20, which was found to be a small source. CH4 levels 

across all samples (n = 77) ranged from -0.1014 μg m
-2 

h
-1

 to 0.1259 μg m
-2 

h
-1

.  CH4 was 

found to be significantly higher in the CM20 treatment than its CM treatment pair (t (10) 

= 3.64, p = 0.0046). There were no other significant differences in CH4 found between 

treatments.  

 

5.4. Discussion  

5.4.1. Hydrologic Bioretention Performance  

 The reductions in stormwater volume and peak flow rate were in alignment with 

what has been previously reported in the literature (Table 26), although inflow peak flow 

rates were on the low end, likely due to the smaller watershed sizes in this study.  
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Table 26. Infiltration rates within soil media in select bioretention cells. 

Reference Infiltration Rate 

This study Modelled Rate at Installation: 131 cm hr
-1

 

Arias et al (2001) Actual Rate: 463 cm hr
-1 

Brix et al. (2001) Actual Rate: 92 cm hr
-1

 

Chen et al (2013) Actual Rate: 1.3 cm hr
-1 

Davis et al. (2009) Recommends > 2.5 cm hr
-1

 

Debusk et al. (2011) Actual Rate: 11.8 cm hr
-1

 

Dietz and Clausen (2005) Design Rate: 10 – 13 cm hr
-1

Actual Rate: 3.5 cm hr
-1

 

Hatt et al. (2008) Actual Rate: 26.028 cm hr
-1 

to 232.92 cm hr
-1

 in different treatments 

Hunt et al. (2006) Actual Rate: 7.62 cm hr
-1

 – 38.1 cm hr
-1

 

Li and Davis (2008) Actual Rate: Reduction from 43 – 164 cm hr
-1

 to 3-11 cm hr
-1

 

Lucas and Greenway (2011) Vegetated: 27.7 cm hr
-1

 to 59.6 cm hr
-1

 

Thompson et al. (2008) Actual Rate: 150 to 178 cm hr
-1

 (sand/compost mix) 

Washington State University Pierce 

County Extension (2012) 
Recommends > 2.54 cm hr

-1
 

 

Hunt et al. (2008) demonstrated peak flow reductions of greater than 95%, with inflow 

discharge peaks between 3.7 L s
-1

 and 50.8 L s
-1

,
 
and a maximum outflow peak of 0.48 L 

s
-1

.  DeBusk et al. (2011) found peak flow reductions greater than 99%, with inflow flow 

rates between 0.006 L s
-1

 and 22.4 L s
-1

. Volume reductions were greater than 97%, with 

only five events producing outflow, and the maximum outflow peak flow rate was 2.09 L 

s
-1

 (DeBusk et al. 2011). The maximum outflow flow rate from all treatments in this 

research did not rise above 0.26 L s
-1

, which was lower than outflow peaks reported by 

both Hunt et al. (2008) and DeBusk et al. (2011).   

 Hydraulic conductivities of the CM and SM were much higher than the 

minimum recommended 2.54 cm hr
-1 

(Davis et al. 2009; Washington State University 

Pierce County Extension 2012), and the conductivities reported by many others (Table 

19), but were similar to infiltration rates found by Thompson et al. (2008) for sand and 

compost mixes (150 to 178 cm  hr
-1

) and mixtures with silt loam (87 to 141 cm hr
-1

). 
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Rapid infiltration is ideal for flood control (Dietz 2007) but can be in direct competition 

with residence time, which is a key factor in pollutant removal (Brown and Hunt 2011).  

5.4.2. Factors Affecting Nutrient and Sediment Dynamics   

 The export of nutrients in many of the treatments are likely directly attributable 

to the release of labile N and P from the sand/compost mixture during precipitation 

events, which was counterbalanced to some degree by uptake of nutrients from the soil 

pore water between storm events by plant roots. An additional fraction of outflowing 

nutrients originated from the potting soil that was introduced to the bioretention cells 

when the plants were originally transplanted from their nursery pots during construction. 

Because the volume of this material is minimal in comparison to the total volume of the 

sand/compost mixture, it is not expected to have been a major nutrient contributor.   

 The nutrient contents in the pre-installation sand/compost mixture were found to 

be comparable to those reported within the literature. For instance, the soil P content of 

the pre-installation sand/compost mixture (190 mg kg
-1

) was higher than the 92 mg kg
-1

 

used by Bratieres et al. (2008) (reported in Lintern et al. (2011) but similar to 138 mg kg
-1

 

to 196 mg kg
-1

 range in the materials tested by Liu et al. (2014). Soil extractable NO3
-
 

content in this research (94.75 mg kg 
-1

) was similar to the Virginia Tech bioretention 

mixture (120 mg kg
-1

) but was much lower than the TerraSolve (4,700 mg kg 
-1

) 

experimental bioretention media tested by Liu et al. (2014).  

 The starting CEC of the bioretention media used in this study was 6.30 cmolc kg
-

1
, which was typical of a sand (Sonon et al. 2014), and comparable to that used by 

Passeport et al. (2009) (6.2 cmolc kg
-1

) and Hunt et al. (2006) (1.9 – 7.3 cmolc kg
-1

). Dietz 

and Clausen (2005) used a higher CEC soil (16.8 cmolc kg
-1

 – 22.7 cmolc kg
-1

), a range 
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that is typical of a clay loam (Sonon et al. 2014). The authors showed some of the lowest 

outflow TP concentrations reported (39 μg L
-1

 to 43 μg L
-1

) (Dietz and Clausen 2006).  

5.4.2.1. Vegetation Treatments, V1 and V2  

 The higher outflow mass from V1 of all N and P constituents, as well as 

sediment, were not expected, and may be attributable to root characteristics. V1 

contained plants with predominantly shallow root systems, whereas V2 was dominated 

by Panicum virgatum (switchgrass), which is known for its deep, fibrous roots (Figure 

21). For instance in V1, Helenium autumnale (Sneezeweed) and Aquilegia Canadensis 

(Columbine) have shallow, fibrous roots (Hallman 2009; The Lady Bird Johnson 

Wildflower Center 2016a). The Aster novae angliae (New England Aster) has fibrous 

roots which stem from short rhizomes, and reproduce vegetatively (The Lady Bird 

Johnson Wildflower Center 2016a; b) although we have not observed rhizomes on the 

New England Aster in this study. New England Aster and Sneezeweed had the largest 

observable above ground biomass during the majority of the growing season. The Lobelia 

cardinalis (Cardinal Flower) and Asclepias tuberosa (Butterfly Milkweed) have woody 

taproots, with the latter capable of reaching depths of greater than 6 feet (Natural 

Resources Conservation Service 2005; The Lady Bird Johnson Wildflower Center 

2016c). The Baptisia australis (Blue False Indigo) is a legume that produce root nodules, 

which harbor nitrogen fixing Rhizobium bacteria (The Lady Bird Johnson Wildflower 

Center 2016d). The Anemone canadensis (Windflower) was typically the earliest to 

bloom and spread via rhizomes (Hilty 2015). 

 V2’s below ground root biomass was likely dominated by Panicum virgatum 

(switchgrass), which is known for its deep, fibrous roots. For instance, Mann et al. (2013) 
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found that within 30 weeks of planting switchgrass, the roots had reached a depth greater 

than 6 feet in a non-irrigated system. The outflow mass of all constituents, both labile and 

non-labile, were lower from V2 , which may indicate that the deep rooted switchgrass in 

V2 had access to labile nutrients throughout a larger portion of the soil profile, utilizing 

both the small proportion of nutrients from stormwater which were held in the soil matrix 

between events, and the nutrients from the sand/compost media. The lower outflow NLP 

and TSS mass from V2 may suggest that the deep rooted switchgrass provided superior 

soil stability, or interception via its fine root structure.  TKN was also lower in the 

outflow from V2, which may point to the retention of the organic N component and/or 

ammonium uptake. Further research including an investigation of root distributions 

within the soil profile of the bioretention cells is needed to confirm these hypotheses. 

5.4.2.2. Soil Media Treatments, CM and SM  

 The higher retention of SRP in the SM treatment was in accordance with our 

original hypothesis and likely due to sorption of the SRP in both stormwater and the 

sand/compost mixture, to the Sorbtive Media™. However, the lower nitrate mass from 

the SM was not expected, especially given that the NO3
-
 mass load to SM from 

stormwater is predicted to have been larger that the CM load overall due to SM having a 

larger drainage area (Chapter 4). The NO3
-
 mass from the sand/compost mixture appears 

to have been predominantly removed by vegetative uptake in both the CM and SM 

treatments (the planting palette in V1 was the same as SM), yet if NO3
- 
uptake rates from 

V1 are applied to SM, there is a portion of NO3
-
 mass from the soil media that did not 

make it to the outflow, and was thus removed by other mechanisms. 
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 Microbial denitrification is thought to be the primary nitrate removal mechanism 

by bioretention systems (Bratieres et al. 2008; Davis et al. 2006; Kim et al. 2003; Lucas 

and Greenway 2008), but typically requires an IWS zone. A small IWS zone was present 

in all treatments, therefore any denitrification attributable to this feature would have been 

observed in both CM and SM. An alternative explanation for why the NO3
-
 mass from 

SM was lower than CM is abiotic reduction via chemodenitrification by soil cations 

(Fe
2+

, Cu
2+

) (Davidson et al. 2000; Luther et al. 1997; Pilegaard and Pilegaard 2013). The 

reservoir of ionic material provided by the SM layer may have contributed to some level 

of nitrate reduction and lower outflow mass loads. Nitrate reduction by Sorbtive Media™ 

or other ionic soil media components has not been previously documented in bioretention 

and warrants future research. 

 Removal of both labile and non-labile constituents in the SM treatment may 

have also been influenced by the lower hydraulic conductivity (K) of the SM. The lower 

(K) layer may have forced water to decelerate, providing conditions for larger particles to 

settle out and increasing retention time (Roy-Poirier 2009). 

 The total P sorptive capacity of the SM is estimated to be 5,850 mg of SRP per 

kg of Sorbtive Media™ (Imbrium Systems, personal communication, December 13, 

2015), which is equivalent to approximately 1.4 x 10
6
 mg of SRP (0.2832 m

3
 of Sorbtive 

Media™ was used). At the current loading rate, the material is estimated to reach P 

removal capacity in approximately 27 years, although that lifespan is likely to 

dramatically increase once the labile nutrients from the sand/compost mixture are 

depleted and loading comes primarily from the stormwater. The average annual 

precipitation in Burlington, VT is predicted to deliver approximately 3 g of SRP to the 
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SM cells per year (Chapter 4), and is not likely to significantly impact the lifespan of the 

media when compared to the compost loading contribution.   

5.4.2.3. Precipitation Treatment, CM and CM20 

 Enhanced SRP, NLP, NO3
-
, and TSS stormwater mass removals in CM20 were 

not expected, for the additional runoff and precipitation added to this treatment was 

predicted to increase the mobilization and transport of nutrients and sediment within the 

cell, increasing the mobilization of larger particulate constituents (i.e., NLP, TSS) and the 

solubilization of nutrients within the soil profile, resulting in higher outflow mass loads.   

 The additional runoff and precipitation added to CM20 may have resulted in the 

transport of fines and sediment to lower layers of the soil profile (Mengel and Kirkby 

2001), causing a partial clogging of the underdrain at the outflow. This clogging would 

have inadvertently prevented larger particulates from exiting the underdrain and 

increased retention time, thereby enhancing pollutant removal. This hypothesis is 

supported by a number of ancillary measurements. For instance, the average daily VWC 

at the 61 cm depth (0.1266 ± 0.0379), was significantly higher than at the 5 cm depth 

(0.0751 ±0.0316) in CM20 (t (252) = 26.51, p<0.0001), and above field capacity (Figure 

26). Sandy soils typically have a field capacity relating to a volumetric water content 

(VWC) of between 5% - 10% (Zotarelli et al. 2010). The electrical conductivity (EC) at 

the 61 cm depth was significantly higher than the 5 cm depth in CM20 (t (252) = 32.16, 

p<0.0001), indicating a vertical migration of ionic material within the soil media (Figure 

28). A paired t-test indicated that the CM20 had a lower peak flow rate than CM (t (5) = -

3.35, p = 0.0204).  Further, the nitrate reduction in CM20 was particularly noteworthy, at 



www.manaraa.com

  

173 

 

91% (Table 20), and likely the result of microbial denitrification, which requires some 

level of saturation (Lucas and Greenway 2008). 

 
Figure 28. VWC and EC at the 5cm and 61cm depths during season I and II in CM20 and V2. 

 

5.4.2.4. Precipitation Treatment, SM and SM60 

 The reduced outflow mass from the CM20 treatment which may have resulted 

from a partial clogging of the underdrain as a result of increased runoff and precipitation, 

did not appear to apply to the SM60 treatment, which had a 60% increase in precipitation 

and runoff added, but also contained a layer of Sorbtive Media™.  SM60 was found to 

have greater masses of NLP and TSS in the outflow than SM (the treatments are 

otherwise identical). This was in accordance with our original hypothesis asserting that 

the larger volume of water received by SM60 would result in more pollutant export; the 

results were likely due to the flushing of the larger, predominantly particulate, 

constituents through the sand media and out into the underdrain with the additional 

precipitation. Interestingly, the increase in pollutant export with larger influent volumes 

did not hold true for the labile N and P components. The SRP mass loads in the outflow 

from SM60 were lower than for SM, despite the SM60 receiving more runoff an 
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precipitation volume and having higher inflow SRP mass loads. It is possible that the 

additional runoff and precipitation added to SM60 increased mixing between 

stormwater/compost leachate and the Sorbtive Media layer, which enhanced removal of 

SRP, as shown by lower SRP outflow mass from SM60 than SM.  

 The NO3
-
 mass in the outflow between the SM and SM60 treatments was not 

significantly different, despite the larger NO3
-
 load predicted to have entered the SM60 

treatment due to its larger drainage area. Any potential chemodenitrification occurring in 

SM may have also been a factor in SM60. The additional precipitation to the SM60 

treatment did not appear to have an effect on the solubilization and transport of NO3
-
 or 

SRP in the soil media, for the soil nutrient contents over the course of two years 

following installation were not found to be statistically different. It is possible that the 

nutrients removed from the soil media during a precipitation event had an upper limit, 

which was not exceeded despite the additional volume added.    

5.4.3. Outflow Partial Event Mean Concentrations 

 The  inflow N, P, and sediment PEMC found in stormwater runoff from the 

paved road surface (Chapter 4) were similar to the EMC previously documented by 

others (Davis 2007; Geosyntec Consultants and Wright Water Engineers 2012; Hunt et 

al. 2006), although they were on the lower end overall. The relatively low influent 

concentrations of pollutants influence the calculation of percent mass removal of all the 

treatments; reported percent removal typically increases with increasing inflow mass load 

and volume reduction. When the outflow PEMC from the monitored portion of the event 

(i.e., not limited to the 120 liters of volume previously described) from each treatment are 

compared to the outflow EMC data from the literature, the cells in this study were all 
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comparable in their performance, despite the additional nutrients from the sand/compost 

mixture.     

 Looking at all treatments in the study, the outflow NLP PEMC was lowest from 

the CM20 treatment (18 μg L
-1

) and highest from the CM treatment (cell 2 only; 53 μg L
-

1
). Both values are on low end of what has been found by others (Geosyntec Consultants 

and Wright Water Engineers 2008; Hunt et al. 2006; O’Neill and Davis 2011). For 

instance, Hunt et al. (2006), found NLP effluent to be between 40-800 μg L
-1

.  

 Outflow SRP PEMC was highest from the CM treatment (cell 2 only; 568 μg L
-

1
) and lowest from SM60 (4 μg L

-1
). Both treatment PEMC values were lower than the 

outflow SRP EMC found by Hunt et al. (2006) (2,200 μg L
-1

) and Geosyntec Consultants 

and Wright Water Engineers (2008) (210 μg L
-1

 – 670 μg L
-1

). Outflow SRP PEMC from 

the SM (24 μg L
-1

) and SM60 (4 μg L
-1

) treatments were much lower than most 

conventionally designed bioretention cells, with Bratieres et al. (2008) and Komlos et al. 

(2012) being exceptions. Bratieres et al. (2008) saw outflow SRP concentrations as low 

as 13 μg L
-1

 using a Carex vegetation and a sandy loam. After nine years of operation, 

Komlos et al. (2012) found the SRP concentrations to be as low as 30 μg L
-1

. The soil 

media used by Komlos et al. (2012) was a 1:1 ratio of native material and imported sand, 

with SRP contents after nine years between 80 mg kg
-1

 and 160 mg kg
-1

 (Komlos and 

Traver 2012). The outflow SRP concentrations from SM and SM60 were lower than the 

140 μg L
-1

 from iron coated sand used by Chardon et al. (2005) and similar to O’Neill 

and Davis (2011), (<10 μg L
-1

), who used wastewater treatment residuals.  

 Outflow TKN PEMC was lowest from the CM20 treatment (149 μg L
-1

), and 

highest from the SM treatment (376 μg L
-1

). Outflow TKN values across all treatments 
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were much lower than the outflow TKN EMC’s reported by Geosyntec Consultants and 

Wright Water Engineers (2008) (1,240 -1,780 μg L
-1

) and Hunt et al. (2006)  

(4,900 μg L
-1

).  

 Average NO3
-
 was highest from V1 (547 μg L

-1
) and similar to those reported by 

Geosyntec Consultants and Wright Water Engineers (2008) (410 – 790 μg L
-1

). Average 

NO3
-
 PEMC from V2 (227 μg L

-1
) was similar both Hunt et al. (2006) and Dietz and 

Clausen (2006), who used elevated underdrains (IWS) to enhance denitrification (Table 

14). CM20 exhibited strong signs of denitrification, with an average outflow nitrate 

PEMC of 44 μg L
-1

. This was similar to the outflow nitrate concentrations found by 

Davis (2007) in a lined system (between 10 μg L
-1

 to 50 μg L
-1

) and Lucas and Greenway 

(2008) (40 μg L
-1

), who did not specifically design for saturation.  

 The outflow TSS PEMC was lowest from CM20 (3.03 mg L
-1

) and highest from 

CM (cell 2 only,10.2 mg L
-1

). Both were slightly lower than the outflow TSS EMCs 

reported by Geosyntec Consultants and Wright Water Engineers (2008) (15 to 33 mg L
-1

) 

and similar to that found by Davis (2007) (4 and 64 mg L
-1

). Overall, the outflow PEMC 

for TSS was low across all treatments, which further supports the consistent ability of 

bioretention cells to remove TSS from stormwater, even under simulated increases in 

precipitation due to climate change.  

5.4.4. Soil Greenhouse Gas Emissions  

5.4.4.1. Carbon Dioxide (CO2) 

 There is little research on soil GHG emissions within bioretention cells 

specifically; however, soil gas emissions in other land-use setting are influenced by 

similar factors (e.g., soil porosity, mineral content, water content, pH, temperature). For 
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instance, the range of soil CO2 emissions found in the treatments in this study  (251 mg 

m
-2

 hr
-1

 to 2,650 mg m
-2

 hr
-1

) were similar to Adviento-Borbe et al. (2010) who also  

found large variations in CO2 flux from soils in maize field (13 mg m
-2

 hr 
-1

 to 1,015 mg 

m
-2

 hr 
-1

). Positive correlations between CO2
 
 and temperature are common in all soils due 

to increases in microbial respiration (Mith et al. 2003). For instance, Qiu et al. (2005) 

found an increase CO2 production with increasing temperature in dry lakebed soils, with 

a smaller range of flux values overall (170 mg m
-2

 hr 
-1

 to 365 mg m
-2

 hr 
-1

).. The authors 

also found that leaf litter was a significant source of CO2 overall (Qui et al. 2005). Leaf 

litter was purposefully removed from the anchors prior to gas sampling in this study, but 

may warrant further investigation in future studies.  

 The negative correlation between water filled pore space and CO2 found in this 

research is likely the result of water within micro and macropores impeding the diffusion 

of CO2 (Matson and Harris 1995; Smith et al. 2003). For instance, the 7/29/14 sampling 

date in Figure 27 shows a drop in CO2, which corresponded with a 25% WFPS and was 

the highest WFPS measured. Qiu et al. (2005) also found that temporary submersion 

resulted in declining CO2.  

 The addition of 20% more runoff and precipitation to CM20 did not appear to 

have had a significant effect on CO2 emissions. However, the additional 60% volume in 

SM60, when compared to SM, may have supported a more rigorous soil microbial 

population (Bond-Lamberty and Thomson 2010), resulting in significantly higher CO2 

emissions from the SM60 treatment. The investigation of underground root and microbial 

biomass in bioretention is not well studied and warrants further research.  
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5.4.4.2. Nitrous Oxide (N2O) 

 All treatments were found to exhibit both positive and negative N2O fluxes, with 

the majority of treatments being a small source of N2O overall. Average N2O emissions 

across all treatments were between 1.3 μg m
-2 

h
-1

to 6.9 μg m
-2 

h
-1 

with peaks between 

10.69 μg m
-2 

h
-1 

and 39.09 μg m
-2 

h
-1

. The emissions were similar to the ranges found in 

natural and urban ecosystems (Grover et al. 2013; Kaye et al. 2004).  For instance, total 

soil N2O fluxes of less than 4 μg m
-2 

h
-1

, with peaks between 15 μg m
-2 

h
-1

 and 19 μg m
-2 

h
-1

 were found in grasslands and wheat fields during winter measurements (Kaye et al. 

2004). Urban ecosystems have shown N2O fluxes of 27 μg m
-2 

h
-1

 (Kaye et al. 2004). In 

one of the only studies that previously quantified emissions of N2O in bioretention cells, 

Grover el al. (2013) found that the soil was a source of N2O overall, with average fluxes 

of 13.8 μg m
-2 

h
-1

 and 65.6 μg m
-2 

h
-1

 in sandy loam, and 80% sandy loam, 10% compost, 

10% hardwood mulch, respectively. The simulated rain events used by the authors 

resulted in WFPS as high as 70% (Grover et al. 2013). 

 The maximum average (7 μg m
-2 

h
-1

) and peak (39 μg m
-2 

h
-1

) N2O production 

came from CM20. This is particularly interesting because CM20 was also found to 

exhibit substantial removal of nitrate mass from inflow to outflow (> 90%), and had the 

lowest outflow NO3
-
 mass loads, which may be attributed to some level of saturation in 

the subsoils due to partial clogging of the underdrain.  Maximum N2O production is 

thought to occur when available nitrate levels are high and oxygen content in the soils are 

high enough for some oxidation of NH4
+
 but are not fully aerobic (Kaspar 1982). N2O 

production from nitrification is thought to occur when WFPS is greater than 50% 

(Castellano et al. 2010; Davidson et al. 2000). In this research, the maximum WFPS 



www.manaraa.com

  

179 

 

during soil gas measurements was across all treatments was 33%, indicating largely 

aerobic conditions, with any N2O production likely occurring during nitrification 

(Castellano et al. 2010; Chapuis-Lardy et al. 2007), however these measurements were 

taken at the soil surface. The WFPS at the bottom of the CM20 treatment may have been 

much higher, as indicated by the lower NO3
-
 outflow mass. 

 Although most soils act as a net source of N2O emissions, uptake or 

consumption has also been observed (Butterbach-Bahl et al. 2013; Chapuis-Lardy et al. 

2007; Conrad 1996; Schlesinger 2013). Conditions which lead to N2O consumption are 

not yet fully understood (Butterbach-Bahl et al. 2013), but are thought to be influenced 

by soil available N, moisture, pH, and temperature (Syakila and Kroeze 2011). N2O 

consumption occurs during both nitrification and denitrification reactions (Schlesinger 

2013), with denitrification being the larger consumptive process overall (Chapuis-Lardy 

et al. 2007). Heterotrophic denitrifying bacteria utilize N2O as an energy source and 

terminal electron acceptor when NO3
-
 concentrations are very low and WFPS is moderate 

to high (Chapuis-Lardy et al. 2007; Conrad 1996). The bacteria contain nitrous oxide 

reductase (N2OR), which is an enzyme that uses copper (Cu) clusters as a catalyst 

(Thomson et al. 2012), and allows the bacteria to reduce nitrous oxide to nitrogen gas 

(Butterbach-Bahl et al. 2013; Chapuis-Lardy et al. 2007). N2O consumption typically 

ranges from 0.01 μg m
-2 

h
-1

 to 10 μg m
-2 

h
-1

 (Schlesinger 2013; Syakila and Kroeze 2011).  

  The SM treatment was found to consume N2O on average over the course of the 

growing season (-3 μg m
-2 

h
-1

), which is particularly interesting given the highly charged 

ionic material present (i.e., Sorbtive Media™) in that treatment. Abiotic reactions 

between NO3
-
 and soil minerals (Fe

2+
, Cu

2+
) have been shown as a result of 
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chemodenitrification (Butterbach-Bahl et al. 2013; Chapuis-Lardy et al. 2007; Luther et 

al. 1997). It is possible that the reservoir of ionic material provided by the Sorbtive 

Media™ may have resulted in some abiotic reduction of NO3
-
 and N2O consumption. 

More research would be needed to verify this hypothesis. 

5.4.4.3. Methane (CH4) 

 All of the treatments were found to exhibit a very small amounts of CH4 

consumption on average (3 x 10
-5

 μg m
-2

 hr
-1

 to 0.0171  μg m
-2

 hr
-1

) except for CM20, 

which was interestingly found to be a small source of CH4 (0.0608 μg m
-2

 hr
-1

). The 

factors contributing to production and consumption of methane in soils are complex and 

include organic matter, temperature, moisture, and populations of methanotrophic 

(consuming) and methanogenic (producing) soil microorganisms (Harriss et al. 1982; 

Nesbit and Breitenbeck 1992; Nisbet et al. 2014; Steudler et al. 1989).  

 CH4 production occurs under anaerobic conditions in saturated soils whereas 

CH4 consumption occurs in aerobic soils (Matson and Harris 1995; Smith et al. 2003). 

Grover et al. (2013) found CH4 emissions in bioretention to be < 20 μg m
-2 

h
-1

, although 

large peaks were observed on occasion (~200 μg m
-2 

h
-1

). The positive CH4 flux exhibited 

by CM20 is particularly interesting, for as previously described, the CM20 treatment 

exhibited signs of having some level of saturation present in the subsoils (e.g., showed 

significant nitrate mass reductions, from inflow to outflow, had the lowest NO3
-
 mass 

from the outflow of any of the other treatments and had the highest N2O peak).  

 The high oxygen diffusion capabilities of sand, low soil organic matter content 

and generally low soil moisture conditions likely contributed to methane 

oxidation/consumption in the other treatments. Grover et al. (2013) found average 
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methane uptake rates in bioretention soils to be 16.4 μg m
-2 

h
-1

 in cells with an IWS zone 

and 4.2 μg m
-2 

h
-1

 in a non-IWS cell. The high WFPS created with simulated events may 

have contributed to a higher initial production of CH4, which was then oxidized in the 

upper soil layers (Grover et al. 2013). The consumption of CH4 by other land-uses (e.g., 

rural forest, urban lawn, sub-artic tundra) has been between 10 μg m
-2 

h
-1 

and 125μg m
-2 

h
-1

, with urban soils tending to be on the lower end of the consumption spectrum 

(Adamsen and King 1993; Groffman and Pouyat 2009; Kaye et al. 2004). 

 Another factor that may have influenced the CH4 production/consumption was 

the depth to the layer most likely to be saturated. Smith et al. (2003) found that methane 

fluxes were negatively correlated with the depth to groundwater due to the oxidation of 

methane in the upper soil layers. At 50 cm below the surface, Smith et al. (2003) predicts 

the CH4 flux would be < 1.6 μg m
-2 

h
-1

, which is in accordance with our findings. Both 

production and consumption rates of gases in this research were extremely small in the 

global context, but are interesting, in that they offer insight into the processes taking 

place inside the bioretention cells. 

 

5.5. Conclusions 

 Bioretention cells have exciting potential to mitigate the impacts of urbanization 

and help restore impaired waterbodies. In this research, bioretention cells were shown to 

consistently reduce peak flow rates and stormwater volumes, making them adept at 

increasing local climate change resiliency. Non-labile nutrient removal in bioretention 

was also considerable and found to be largely a function of physical filtration, similar to 

TSS.  
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The sand-based bioretention soil media used in this research was resilient to 

simulated increases in precipitation due to climate change (i.e., 20% more runoff and 

precipitation per bioretention cell) that are projected for the northeastern U.S., in that 

nutrient and sediment removal did not decrease with increased storm volumes. This 

phenomenon may be site-specific, however, and designs in other climates or which 

included other soil types, would need to be evaluated for resiliency. When subjected to 

much larger increases in precipitation (e.g., 60% more runoff and precipitation falling on 

the cell), the bioretention cells with Sorbtive Media™ showed enhanced SRP removal. 

NLP and TSS retention was not robust under these conditions, yet outflow concentrations 

were still comparable to the other treatments, and those reported in the literature.  

 Organic amendments such as compost are likely to contain labile nutrient 

contents far greater than that of incoming stormwater from a medium-traffic paved road 

surface. If high effluent mass loads of nutrients are to be avoided, the total available 

nutrient mass in the soil media needs to be less than the vegetative uptake capacity. 

Increased effluent nutrient loads may be temporary (a few years), but the short-term 

impacts of those nutrients should be assessed and minimized prior to the selection of soil 

media for bioretention. Sorbtive Media™ was shown to be effective at removing SRP 

and presents opportunities for the development of localized soil blends that can maximize 

phosphorus removal through sorption.  

Vegetation characteristics such as root depth, texture, and architecture played a 

key role in the removal of both labile and non-labile nutrients from the soil profile. Deep-

rooted plants provided soil stability and greater access to nutrients throughout a soil 

profile, contributing to enhanced labile nutrient uptake. Successful vegetative 
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establishment in the absence of excessive soil amendments like compost (that leach 

nutrients) will require plants that can tolerate low nutrient conditions, and which are 

tolerant of both floods and droughts. The nutrient requirements and uptake capacities of 

different bioretention plants are not well quantified and warrant further research. 

 Nitrate reduction may be achieved with extended detention in an anaerobic 

environment, and may be enhanced by abiotic reactions (i.e., chemodenitrification), 

although specific conditions conducive to maximizing denitrification efficiency (e.g., 

nitrate concentrations, duration, labile carbon content, soil mineral content, electron 

donors) need further investigation. Hybrid conditions which allow for both oxidative and 

reductive processes could maximize both P and N removal and warrant future research.  

 It appears that bioretention cells may be a small source of N2O, but it is not 

likely to be significant in the greater context of global emissions. Bioretention cells may 

act as a sink for CH4, if soils at the surface are aerobic; however, the inclusion of an 

internal water storage zone may alter CH4 and N2O emissions and uptake dynamics and 

require further investigation.  
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APPENDIX 

 
Table 27. Watershed (drainage area) size and liner length by cell. 

Cell Area liner strip (m^2) Watershed Areas (m^2) Total Watershed Area (m^2) Surface Area to Watershed Area Ratio 

(SA = 3.72 m2) 

1 6.89 40.32 47.21 0.08 

2 3.72 33.17 36.88 0.10 

3 16.64 120.12 136.77 0.03 

4 19.20 64.10 83.31 0.04 

5 4.45 62.62 67.07 0.06 

6 4.75 53.51 58.27 0.06 

7 4.94 29.73 34.67 0.11 

8 5.55 61.13 66.68 0.06 

 

 

Table 28. Inflow weir discharge equations, with (Q) = discharge (cfs), (H) = height (ft). 

Q1 = 7.3858 * H2.7088 

Q2 = 3.5975 * H2.4424 

Q3 = 4.3192 * H2.5137 

Q4 = 4.8798 * H2.5761 

Q5 = 3.8256 * H2.4750 

Q6 = 4.8967 * H2.5735 

Q7 = 4.1210 * H2.4923 

Q8 = 5.3260 * H2.6022 

 

 

Table 29. ASTM guidelines for a 90
o
 weir and actual dimensions of study weirs. 

ASTM Recommendation 4.57 < H < 60.96 (cm) P > 9.14 (cm) B > 731.5 (cm) H/P < 1.2 H/B < 0.4 

Weir H (cm) P (cm) B (cm) H/P H/B 

1 7.62 5.59 20.35 1.36 0.37 

2 7.62 5.51 20.40 1.38 0.37 

3 7.62 5.59 20.72 1.36 0.37 

4 7.62 5.41 20.65 1.41 0.37 

5 7.62 5.50 20.60 1.39 0.37 

6 7.62 5.70 20.90 1.34 0.36 

7 7.62 5.75 19.95 1.33 0.38 

8 7.62 5.60 20.50 1.36 0.37 

Average 7.62 5.58 20.51 1.37 0.37 

 

 

Table 30. Time needed to monitor the inflow hydrograph. 
Watershed Drainage 

Area 

(ft^2) 

Peak Flow 

Q = CiA 

(cfs) 
 

Time of Concentration (min) Rainfall Intensity 

(in/hr) 

Time (min) Time * 

Multiplier (min) 

1 434 0.0262 5.69 3.07 18.52 37.03 

2 357 0.0216 4.73 3.32 17.12 34.24 

3 1293 0.0782 8.27 2.75 20.67 41.34 

4 690 0.0417 6.75 2.89 19.67 39.34 

5 790 0.0408 5.74 3.07 18.52 37.03 

6 608 0.0348 6.26 3.07 18.52 37.03 

7 320 0.0194 4.93 3.32 17.12 34.24 

8 658 0.0398 6.33 3.07 18.52 37.03 
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Table 31. Inflow cumulative volume, antecedent conditions, and mass per m
2
 of paved drainage area, where n is the number of samples. 

Watershed  

Event 

n Precip  Cumulative 

Volume  

ADD Max 

Air Temp 

APC Q max TP NLP SRP TN TKN NO3 TSS 

inches L Days oF inches L s-1 μg m-2 μg m-2 μg m-2 μg m-2 μg m-2 μg m-2 mg m-2 

1 5 0.45 542 0 86 0.13 1.4118 938 686 252 3,737 3,136 638 388.67 

2 8 0.44 383 0 86 0.13 0.8688 542 312 230 2,912 2,197 848 235.29 

3 3 0.33 311 0 87 0.12 2.5515 774 414 360 3,326 2,687 638 275.67 

4 3 0.93 817 0 87 0.12 1.7403 2,043 1,006 1,036 11,636 9,612 2,024 716.15 

5 3 0.01 23 6 81 0.22 0.0719 21 15 6 72 36 35 9.92 

6 16 0.13 192 1 76 0.29 0.1372 114 82 41 1,390 446 944 18.17 

7 4 0.04 78 0 80 0.28 0.3042 93 64 29 404 201 203 32.43 

8 10 0.09 318 0 71 0.2 0.7968 219 95 124 672 471 201 98.26 

9 22 0.34 504 0 66 0.52 0.6710 1,137 1,059 78 5,314 4,068 1,245 863.14 

10 21 0.07 156 0 66 0.52 0.3042 172 121 51 721 645 76 14.87 

11 11 0.15 248 0 66 0.52 0.5466 488 444 45 439 364 75 116.27 

12 6 0.14 485 3 89 0.04 1.5967 791 657 133 4,047 3,563 484 197.60 

13 2 0.01 27 3 89 0.04 0.1307 104 68 36 543 323 221 14.19 

14 4 0.19 329 3 89 0.04 0.6057 718 705 13 3,055 2,736 319 275.38 

15 19 0.49 732 3 89 0.04 1.2813 2,334 2,260 74 12,717 11,286 1,431 1,011.11 

16 6 0.001 13 4 73 0.03 0.0268 11 6 6 82 64 18 0.96 

17 23 0.13 195 4 73 0.03 0.1082 300 260 40 1,213 914 300 115.94 

18 23 0.22 324 2 86 0.5 0.3244 233 162 71 5,786 4,450 1,336 89.87 

19 4 0.01 35 0 71 0.05 0.0834 22 19 3 109 94 15 0.67 

20 9 0.07 99 0 71 0.05 0.1533 276 265 10 1,710 1,232 478 23.40 

21 19 0.26 888 0 86 0.03 1.3602 466 243 223 1,935 1,171 763 126.86 

22 2 0.01 15 0 86 0.03 0.0715 11 10 1 213 74 139 2.37 

23 20 0.61 898 0 86 0.03 1.1627 963 776 187 5,609 4,056 1,552 442.97 

24 16 0.10 164 0 88 0.03 0.3811 252 196 56 902 732 304 78.50 

25 22 0.25 297 0 70 1.06 0.2389 184 97 87 975 418 557 8.75 

26 21 0.66 617 0 70 1.06 0.8078 599 342 257 4,878 2,555 2,323 24.31 

27 21 0.78 686 2 74 1.61 0.8382 707 370 384 12,979 9,480 3,499 253.88 

28 11 0.07 79 0 73 0.01 0.0143 84 17 67 371 73 315 4.25 

29 20 0.07 62 0 73 0.01 0.0513 88 14 74 937 303 634 18.48 

30 18 0.03 58 0 73 0.01 0.0304 27 6 21 204 132 78 5.39 

31 6 0.11 134 0 89 0.01 0.7008 837 277 561 3,061 2,033 1,028 141.38 

32 21 0.20 178 0 89 0.01 0.6292 1,055 311 743 3,837 2,414 1,423 89.42 

33 18 0.07 88 3 79 0.45 0.1809 298 103 195 1,498 680 818 17.83 

34 24 0.29 257 3 79 0.45 0.2889 406 181 225 2,901 1,504 1,397 69.34 

35 22 0.87 765 11 59 0.02 0.4763 1,225 161 1,064 10,786 4,747 6,039 . 
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Table 32. Inflow partial event mean concentration by watershed event, where n is the number of samples. 
Watershed Event n Cell Date TP PEMC NLP PEMC SRP PEMC TN PEMC TKN PEMC NO3 PEMC TSS PEMC 

1 5 1 06/23/2013 81.74 59.81 21.93 325.66 273.26 55.61 33.82 

2 8 7 06/23/2013 49.03 28.20 20.82 263.45 198.76 76.68 21.21 

3 3 2 07/04/2013 91.75 49.05 42.70 394.23 318.56 75.67 32.68 

4 3 7 07/04/2013 86.66 42.70 43.96 493.59 407.74 85.85 23.24 

5 3 5 09/02/2013 60.62 42.67 17.94 209.19 106.28 102.92 3.10 

6 16 6 09/10/2013 34.65 24.84 12.49 421.56 135.35 286.21 5.49 

7 4 4 10/07/2013 98.71 67.89 30.82 429.16 213.58 215.58 34.80 

8 10 3 11/01/2013 94.25 40.86 53.40 289.42 202.74 86.68 44.27 

9 22 6 05/17/2014 131.38 122.32 9.06 614.00 470.11 143.88 99.61 

10 21 4 05/17/2014 92.14 64.86 27.28 385.65 344.97 40.68 7.96 

11 11 5 05/17/2014 132.06 120.01 12.05 118.69 98.36 20.33 31.39 

12 6 3 06/03/2014 222.77 185.19 37.57 1,140.11 1,003.85 136.27 55.64 

13 2 4 06/03/2014 324.48 211.88 112.60 1,698.83 1,009.18 689.65 4.93 

14 4 5 06/03/2014 146.27 143.60 2.67 622.02 557.14 64.88 56.70 

15 19 6 06/03/2014 185.88 179.97 5.91 1,012.58 898.67 113.91 80.51 

16 6 3 06/11/2014 122.05 63.03 59.02 876.47 687.45 189.02 1.32 

17 23 6 06/11/2014 89.53 77.59 11.94 362.28 272.77 89.51 34.54 

18 23 6 06/17/2014 41.79 29.11 12.68 1,039.81 799.74 240.08 18.54 

19 4 3 06/25/2014 86.23 74.42 11.80 431.73 373.83 57.90 2.65 

20 9 6 06/25/2014 162.18 156.10 6.08 1,005.56 724.70 280.86 13.76 

21 19 3 07/03/2014 71.79 37.47 34.31 297.91 180.34 117.57 19.54 

22 2 4 07/03/2014 61.22 55.06 6.16 1,151.44 400.33 751.11 12.81 

23 20 6 07/03/2014 62.48 50.35 12.14 363.77 263.10 100.67 28.50 

24 16 5 07/08/2014 103.01 79.97 33.25 368.49 298.80 231.33 5.72 

25 22 1 07/28/2014 29.20 15.36 13.83 154.85 66.40 88.46 1.39 

26 21 2 07/28/2014 35.81 20.46 15.35 291.47 152.66 138.81 1.45 

27 21 7 07/31/2014 35.78 18.74 19.41 656.42 479.46 176.95 12.67 

28 11 1 08/13/2014 50.09 9.94 40.15 220.63 43.33 187.57 2.53 

29 20 7 08/13/2014 49.13 7.75 41.37 525.13 169.78 355.35 1.36 

30 18 8 08/13/2014 30.92 7.46 24.75 235.28 152.69 90.37 6.21 

31 6 1 09/02/2014 294.50 97.26 197.24 1,076.36 714.76 361.59 49.72 

32 21 7 09/02/2014 224.92 68.07 156.84 805.82 510.02 295.80 17.38 

33 18 1 09/06/2014 158.33 54.88 103.45 794.72 360.86 433.86 9.46 

34 24 7 09/06/2014 54.69 24.37 30.32 391.13 202.82 188.31 9.35 

35 22 7 10/04/2014 55.52 7.30 48.22 488.92 215.17 273.75 . 
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Table 33. Average inflow and outflow outflow cumulative mass from 0 – 120 L per treatment. All units in μg except TSS (mg), where inflow n is 

the number of storm events and outflow n is equal to the number of samples. 
 Vol n Inflow ± n V1 ± n V2 ± n CM ± n CM20 ± n SM ± n SM60 ± 

TP 20 14 2,470 637 43 9,712 3,843 33 5,776 2,889 27 12,921 4,021 14 5,885 4,120 27 1,314 749 13 849 363 

 40 14 3,852 793 16 27,750 7,201 34 8,655 5,881 2 37,746 8,043 10 11,287 5,756 2 1,436 755 26 1,719 593 

 60 12 10,160 1,238 12 30,342 28,374 17 15,000 11,669 3 38,063 46,799 9 14,337 10,192 3 2,659 797 8 3,083 1,392 

 80 11 14,063 1,423 9 39,873 38,561 17 21,253 17,431 4 51,726 62,873 10 17,700 12,714 4 3,209 1,250 5 4,557 1,645 

 100 12 21,801 1,916 21 52,576 48,421 11 30,727 22,861 13 62,241 75,209 9 20,369 15,514 13 3,524 1,809 5 5,184 2,623 

 120 7 28,053 2,325 6 104,665 76,691 8 56,092 48,748 3 139,313 111,734 3 28,096 15,706 3 3,935 1,858 5 6,261 3,246 

NLP 20 14 1,566 373 43 784 347 33 483 371 27 1,011 355 14 659 444 27 899 603 13 766 347 

 40 14 2,306 507 16 1,967 700 34 952 641 2 2,563 711 10 1,188 614 2 1,056 628 26 1,602 622 

 60 12 7,119 771 12 2,531 2,491 17 1,459 1,034 3 2,976 3,663 9 1,458 978 3 1,845 733 8 2,886 1,420 

 80 11 9,392 865 9 3,758 3,291 17 2,118 1,711 4 4,097 4,957 10 1,747 1,161 4 1,922 1,241 5 4,287 1,594 

 100 12 15,460 1,128 21 4,698 4,174 11 2,704 1,969 13 4,522 6,108 9 1,981 1,405 13 1,930 1,666 5 4,978 2,460 

 120 7 18,154 1,288 6 8,664 6,595 8 4,697 3,756 3 10,030 8,661 3 2,812 1,609 3 2,138 1,761 5 5,961 3,076 

SRP 20 14 904 265 43 8,928 3,609 33 5,294 2,775 27 11,910 3,700 14 5,226 3,695 27 415 170 13 83 33 

 40 14 1,558 286 16 25,783 6,861 34 7,703 5,259 2 35,183 7,401 10 10,099 5,192 2 694 181 26 117 61 

 60 12 3,069 469 12 28,224 26,185 17 13,541 10,655 3 35,913 43,252 9 12,879 9,232 3 1,129 239 8 197 99 

 80 11 4,717 560 9 36,528 35,307 17 19,433 15,746 4 48,455 57,986 10 15,954 11,565 4 1,602 273 5 271 143 

 100 12 7,484 790 21 48,291 44,283 11 28,320 20,910 13 58,545 69,168 9 18,388 14,114 13 1,909 418 5 335 186 

 120 7 11,597 1,038 6 96,414 70,131 8 51,693 45,001 3 130,109 103,142 3 25,284 14,505 3 2,112 473 5 429 248 

TN 20 14 15,039 3,830 43 14,216 8,313 33 9,844 7,833 27 10,910 3,578 14 4,382 2,137 27 15,471 8,653 13 13,751 5,486 

 40 14 25,694 4,605 16 35,296 15,085 34 12,624 12,266 2 22,982 7,156 10 8,494 2,513 2 20,333 13,972 26 21,900 6,909 

 60 12 59,370 6,117 12 38,951 27,408 17 21,827 20,089 3 23,434 30,785 9 12,134 2,521 3 32,962 16,649 8 36,955 17,685 

 80 11 74,658 7,060 9 44,707 35,135 17 28,510 23,694 4 32,608 40,394 10 16,398 2,755 4 37,173 30,123 5 48,958 23,435 

 100 12 115,802 9,002 21 58,318 39,558 11 34,746 39,036 13 42,534 48,919 9 19,963 3,203 13 44,748 34,449 5 61,372 27,131 

 120 7 147,942 9,948 6 89,734 63,765 8 52,718 46,108 3 88,528 69,883 3 22,261 3,280 3 50,019 39,046 5 76,501 33,228 

TKN 20 14 8,869 1,939 43 6,094 3,414 33 2,662 1,157 27 5,525 3,049 14 3,875 2,055 27 7,268 4,198 13 3,560 1,585 

 40 14 16,223 1,961 16 11,652 5,922 34 4,822 2,185 2 6,726 6,099 10 7,658 2,431 2 8,139 4,656 26 7,398 2,778 

 60 12 40,193 3,500 12 13,121 8,581 17 8,256 4,758 3 6,827 10,366 9 10,638 2,743 3 11,409 7,012 8 16,190 6,189 

 80 11 48,620 3,584 9 13,952 10,283 17 10,719 6,019 4 8,096 11,842 10 13,941 3,312 4 16,161 13,440 5 21,310 7,709 

 100 12 81,799 5,343 21 17,377 11,305 11 12,606 10,926 13 8,813 13,437 9 16,710 4,128 13 22,988 15,774 5 26,656 9,511 

 120 7 105,248 5,512 6 25,915 16,961 8 17,679 13,990 3 17,644 17,075 3 18,911 4,551 3 24,977 17,911 5 33,394 11,794 

NO3 20 14 6,302 1,958 43 8,124 5,835 33 7,183 6,952 27 5,385 2,029 14 506 238 27 8,203 5,258 13 10,191 4,685 

 40 14 9,738 2,771 16 25,135 11,305 34 8,532 11,031 2 18,658 4,058 10 865 279 2 12,193 9,507 26 14,502 6,706 

 60 12 19,434 2,853 12 27,263 21,411 17 14,300 16,711 3 19,010 23,427 9 1,645 355 3 21,553 9,661 8 20,765 12,170 

 80 11 26,648 3,780 9 32,430 28,138 17 18,952 20,071 4 26,915 31,556 10 2,607 652 4 22,095 16,716 5 27,647 16,170 

 100 12 38,105 3,896 21 44,795 33,151 11 23,302 30,459 13 36,124 38,475 9 3,402 857 13 27,210 18,577 5 34,716 17,852 

 120 7 47,555 4,741 6 68,954 54,152 8 36,202 34,432 3 73,286 55,814 3 3,574 1,087 3 30,492 20,154 5 43,107 21,667 

TSS 20 13 773 120 41 165 70 24 77 39 26 244 83 9 71 31 20 125 59 12 207 115 

 40 12 1,247 161 13 477 132 28 178 108 2 776 165 6 155 34 3 174 61 26 286 147 

 60 12 3,686 181 9 808 192 14 349 231 2 1,334 269 5 186 50 3 179 75 8 449 212 

 80 10 4,530 266 4 917 261 8 492 391 2 1,494 372 7 250 57 3 231 148 5 529 280 

 100 11 6,774 280 8 946 311 8 590 409 2 1,512 372 6 292 61 15 474 329 5 670 306 

 120 6 7,903 439 6 1,080 348 8 868 596 2 1,588 390 3 323 80 7 528 409 5 775 320 
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Table 34. Outflow PEMC by date and cell, where n is the number of samples. 
 Outflow PEMC 

 Date Cell n TP NLP SRP TN TKN NO3
- TSS 

 μg L-1 μg L-1 μg L-1 μg L-1 μg L-1 μg L-1 mg L-1 

1 06/23/2013 7 12 556.21 42.27 513.94 1,816.23 580.39 1,235.84 16.44 

2 07/04/2013 7 9 1,957.91 133.09 1,824.82 1,759.4 669.71 1,279.71 14.65 

3 08/01/2013 8 5 729.18 44.21 684.98 1,873.68 692.58 1,181.1 0.32 

4 09/02/2013 6 8 791.8 23.6 768.19 2,475.37 605.95 1,869.96 1.71 

5 10/07/2013 2 22 1,143.09 84.6 1,072.25 728.85 122.76 614.52 11.47 

6 10/07/2013 3 25 33.55 27.82 5.73 738.15 101.67 636.48 6.16 

7 11/01/2013 4 22 44.88 23.04 21.84 404.26 96.67 307.59 0.61 

8 05/17/2014 3 24 58.98 50.6 8.39 1,340.77 487.31 853.46 1.29 

9 05/17/2014 4 16 66.87 42.14 24.73 1,009.67 379.8 629.88 3.21 

10 05/17/2014 6 22 1,475.76 103.25 1,372.51 1,352.27 502.08 908.9 4.98 

11 06/03/2014 3 5 91.18 88.17 3.01 726.11 368.86 357.25 5.8 

12 06/03/2014 4 9 151.5 118.85 32.65 1,491.25 837.36 653.89 11.81 

13 06/03/2014 6 9 419.45 32.1 387.35 1,243.9 604.51 639.39 9.22 

14 06/18/2014 6 2 206.45 29.98 176.47 406.37 312.75 93.62 1.91 

15 06/25/2014 3 22 66.38 64.24 2.35 416.26 217.16 199.1 7.33 

16 06/25/2014 6 23 175.72 22.39 153.33 589.93 218.73 371.2 1.47 

17 07/03/2014 3 6 17.23 15.09 2.15 534.9 262.29 272.61 6.12 

18 07/03/2014 4 16 28.49 10.98 17.5 370.25 190.67 260.31 5.42 

19 07/03/2014 6 19 359.84 30.96 328.89 631.07 288.75 427.13 3.73 

20 07/08/2014 8 2 446.4 12.59 433.82 342.98 93.32 249.66 6.52 

21 07/28/2014 8 21 170.48 21.78 148.7 202.68 52.76 149.92 2.55 

22 07/31/2014 1 19 365.71 33.41 332.3 219.64 196.2 26.78 2.56 

23 07/31/2014 2 9 763.12 77.21 685.91 790.45 675.8 114.66 8.2 

24 08/13/2014 1 24 111.11 12.03 99.08 172.4 131.59 40.81 3.17 

25 08/13/2014 7 23 86.46 10.13 76.33 105.84 27.19 78.65 1.36 

26 08/13/2014 8 27 182.75 38.14 144.61 292.47 156.24 136.24 5.3 

27 09/06/2014 1 4 168.79 18.66 150.12 175.29 111.37 63.92 3.36 

28 09/06/2014 2 16 520.97 44.31 476.66 541.73 217.62 324.11 10.94 

29 09/06/2014 7 25 88.03 13.58 74.45 184.35 66.56 117.8 1.86 

30 10/04/2014 1 19 84.74 8.39 76.35 200.95 157.24 43.71 . 

31 10/04/2014 2 14 43.16 4.81 38.36 121.94 10.78 111.16 . 

32 10/04/2014 7 22 45.96 6.17 39.79 150.26 90.87 59.39 . 
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